ارزیابی قابلیت جذب انرژی چند لایه اپوکسی-الیاف شیشه/آلومینیوم پس از قرارگیری در سیکل‌های گرمایشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران

2 دانشیار، مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران

3 استاد، مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران

4 استادیار، مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران جنوب، تهران

چکیده

در شرایط واقعی، سازه­های کامپوزیتی تحت شرایط محیطی متفاوت مانند سیکل­های حرارتی قرار می­گیرند. هدف تحقیق حاضر، بررسی تأثیر اعمال سیکل­های حرارتی بر قابلیت جذب انرژی چند لایه الیاف- فلز ساخته شده با پوسته آلومینیومی و هسته کامپوزیتی اپوکسی- الیاف شیشه با چیدمان­های متفاوت الیاف شیشه می­باشد. به همین دلیل در گام نخست، چند لایه الیاف- فلز با دو چیدمان تک جهته 0˚/0˚/0˚/0˚ و 90˚/90˚/90˚/90˚ و دو چیدمان دو جهته +45˚/-45˚/-45˚/+45˚ و 0˚/90˚/90˚/0˚ ساخته شدند. سپس، نمونه­های ساخته شده تحت سیکل­های حرارتی 0، 1، 10، 30، 50 و 90 سیکل قرار گرفتند. هر سیکل حرارتی شامل افزایش دما تا ˚C100 به مدت 15 دقیقه، نگه­داری در این دما به مدت 5 دقیقه و خنک کردن تا دمای محیط به مدت 15 دقیقه بود. پس از آن قابلیت جذب انرژی و شناسایی مکانیزم­ها توسط آزمون ضربه، بررسی ماکروساختاری و بررسی میکروسکوپی بررسی شدند. نتایج بدست آمده نشان داد که تا 10 سیکل حرارت­دهی در چند لایه­های الیاف- فلز با چیدمان تک جهته قابلیت جذب انرژی بهبود یافته است و پس از آن این قابلیت روندی کاهشی داشت. کم­ترین و بیش­ترین حساسیت قابلیت جذب انرژی به سیکل­های حرارتی به ترتیب در نمونه­ها با چیدمان­های +45˚/-45˚/-45˚/+45˚ و 0˚/90˚/90˚/0˚ مشاهده شدند. بررسی ماکروسکوپی نشان داد که پس از اعمال 90 سیکل حرارتی، جدایش بین لایه­های الیاف شیشه مکانیزم اصلی شکست در چندلایه­های الیاف فلز بود. با بررسی میکروسکوپی فهمیده شد که سیکل­های حرارتی بالا باعث کاهش چسبندگی بین الیاف شیشه و زمینه اپوکسی در چند لایه الیاف- فلز شده است.

کلیدواژه‌ها


عنوان مقاله [English]

The assessment of energy absorption capability of aluminum/epoxy-glass fibers laminates after exposer to the thermal cycling

نویسندگان [English]

  • Mohammad Askari 1
  • Mehrdad Javadi 2
  • Reza Eslami Farsani 3
  • Abdolreza Geranmayeh 4
1 Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
3 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran.
4 Department of Mechanical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

In the real conditions, the composite structures set into the various environment conditions like thermal cycling. The aim of this work is to investigate the effect performing the thermal cycling on the absorbed energy capability of fibers metal laminates (FMLs) with aluminum skin and glass fibers/ epoxy composites core with the various stacking sequence of glass fibers. For this reason, in the first step, the FMLs with two unidirectional configurations (0˚/0˚/0˚/0˚، and 90˚/90˚/90˚/90˚) and two bi-directional configurations (+45˚/-45˚/-45˚/+45˚ and 0˚/90˚/90˚/0˚) were fabricated. Then, the samples were aged by 0, 1, 10, 30, 50 and 90 thermal cycles. Each thermal cycle was heating the samples up to 100 ˚C for 15 min, maintaining in this temperature for 5 min, and cooling them down to the ambient temperature for 15 min. After that, measuring the absorbed energy and characterizing the mechanisms were investigated by Charpy impact test, macrostructural method and microscopic analysis. The obtained results showed, up to 10 thermal cycles in the FMLs with unidirectional configurations, the absorbed energy capability has improved. After that, it had the reducing trend. The minimum and maximum sensitivity of absorbed energy capability in the thermal cycling were seen into the samples with the configurations of +45˚/-45˚/-45˚/+45˚ and 0˚/90˚/90˚/0˚, respectively. The macrostructural investigation was showed, the delamination between fibers plies was the main failure mechanism in the FMLs, after performing 90 thermal cycles. By using the microscopic analysis was found that the thermal cycling caused to reduce the adhesion between glass fibers and epoxy matrix into the FML.

کلیدواژه‌ها [English]

  • Fiber Metal Laminate
  • Impact Test
  • Thermal Cycling
  • Energy Absorption
[1] H. Ebrahimnezhad Khaljiri, R. Eslami Farsani, H. Khorsand, K. Abbas Banaie, Hybridization effect of fibers reinforcement on tensile properties of epoxy composites, Journal of Science and Technology of Composite, Vol. 1, No. 2, pp. 21-28, 2015. (in Persian).
[2] F. Bahari-Sambran, R. Eslami-Farsani, H. Ebrahimnezhad-Khaljiri, Experimental investigation of flexural behavior of basalt fibers/epoxy-aluminum laminate composites containing nanoclay particles, Iranian Journal of Manufacturing Engineering, Vol. 5, No. 1, pp. 45-54, 2018. (in Persian).
[3] M. Y. Khalid, Z.U. Arif, A. Al Rashid, M.I. Shahid, W. Ahmed, A.F. Tariq, Z. Abbas, Interlaminar shear strength (ILSS) characterization of fiber metal laminates (FMLs) manufactured through VARTM process, Forces in Mechanics, Vol. 4, 100038, 2021.
[4] M. Shamohammadi Maryan, H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, The experimental assessment of the various surface modifications on the tensile and fatigue behaviors of laminated aluminum/aramid fibers-epoxy composites, International Journal of Fatigue, Vol. 154, 106560, 2022.
[5] R. Eslami-Farsani, H. Aghamohammadi, S. M. R. Khalili, H. Ebrahimnezhad-Khaljiri, H. Jalali, Recent trend in developing advanced fiber metal laminates reinforced with nanoparticles: A review study, Journal of Industrial Textiles, Accessed on 26 August 2020. doi:10.1177/1528083720947106.
[6] A. Vlot, M. Krull, Impact damage resistance of various fibre metal laminates. Journal de Physique IV Proceedings, EDP Sciences, Vol. 07, pp. 1045-4050, 1997.
[7] J. I. Múgica, L. Aretxabaleta, I. Ulacia, J. Aurrekoetxea, Impact characterization of thermoformable fibre metal laminates of 2024-T3 aluminium and AZ31B-H24 magnesium based on self-reinforced polypropylene, Composites Part A: Applied Science and Manufacturing, Vol. 61, pp. 67-75, 2014.
[8] J. Fan, Z. W. Guan, W. J. Cantwell, Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading, Composite Structures, Vol. 93, No. 9, pp. 2430-2436, 2011.
[9] T. Pärnänen, R. Alderliesten, C. Rans, T. Brander, O. Saarela, Applicability of AZ31B-H24 magnesium in Fibre Metal Laminates – An experimental impact research, Composites Part A: Applied Science and Manufacturing, Vol. 43, No. 9, pp. 1578-1586, 2012.
[10] M. H. Pol, G. Liaghat, E. Zamani, A. Ordys, Investigation of the ballistic impact behavior of 2D woven glass/epoxy/nanoclay nanocomposites, Journal of Composite Materials, Vol. 49, No. 12, pp. 1449-1460, 2015.
[11] S. D. Malingam, F. A. Jumaat, L. F. Ng, K. Subramaniam, A. F. A. Ghani, Tensile and impact properties of cost-effective hybrid fiber metal laminate sandwich structures, Advances in Polymer Technology, Vol. 37, No. 7, pp. 2385–2393, 2018.
[12] L. M. G. Vieira, J. C. dos Santos, T. H. Panzera, J. C. C. Rubio, F. Scarpa, Novel fibre metal laminate sandwich composite structure with sisal woven core, Industrial Crops and Products, Vol. 99, pp.189–195, 2017.
[13] M. Najafi, R. Ansari, Influence of thermal aging on mechanical properties of fiber metal laminates hybridized with nanoclay, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 233, No. 19-20, pp. 7003-7018, 2019.
[14] M. A. Azghan, R. Eslami-farsani, The effects of stacking sequence and thermal cycling on the flexural properties of laminate composites of aluminium-epoxy / basalt-glass fibres, Materials Research Express, Vol. 5, 025302, 2018.
[15] A. da Costa, D. F. N. R. da Silva, D. N. Travessa, E. C. Botelho, The effect of thermal cycles on the mechanical properties of fiber-metal laminates, Materials and Design, Vol. 42, pp. 434-440, 2012.
[16] H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, S. Talebi, Investigating the high velocity impact behavior of the laminated composites of aluminum/jute fibers- epoxy containing nanoclay particles, Fibers and Polymers, Vol. 21, No. 11, pp. 2607-2613, 2020.
[17] H. Rahmani, R. Eslami-Farsani, H. Ebrahimnezhad-Khaljiri, High velocity impact response of aluminum- carbon fibers-epoxy laminated composites toughened by nano silica and zirconia, Fibers and Polymers, Vol. 21, No. 1, pp. 170-178, 2020.
[18] M. Najafi, R. Eslami-Farsani, A. Saeedi, H. Ebrahimnezhad-Khaljiri, The effect of environmental conditions on the synthetic fiber-reinforced epoxy composites, S. M. Rangappa, J. Parameswaranpillai, S. Siengchin, S. Thomas (Eds), Handbook of Epoxy/Fiber Composites, pp. 16.1-16.51, Singapore: Springer, 2022.
[19] G. C. Papanicolaou, A. G. Xepapadaki, G. D. Tagaris, Effect of thermal shock cycling on the creep behavior of glass-epoxy composites, Composite Structures, Vol. 88, No. 3, pp. 436-442, 2009.
[20] T. Akderya, Investigation of thermal-oil environmental ageing effect on mechanical and thermal behaviours of E-glass fibre / epoxy composites, Journal of Polymer Research, Vol. 25, 214, 2018.
[21] B. C. Ray, Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites, Journal of Colloid and Interface Science, Vol. 298, No. 1, pp. 111-117, 2006.
[22] H. Ebrahimnezhad-Khaljiri, Hygrothermal aging and their influence on mechanical properties of the bio-composites, C. Muthukumar, S. Krishnasamy, S. M. K. Thiagamani, S. Siengchin, (Eds), Aging Effects on Natural Fiber-Reinforced Polymer Composites: Durability and Life Prediction. pp. 115-136, Singapore: Springer, 2022.
[23] B. Müller, M. Hagenbeek, J. Sinke, Thermal cycling of (heated) fibre metal laminates, Composite Structures, Vol. 152, pp. 106-116, 2016.
[24] M. Zhang, B. Sun, B. Gu, Accelerated thermal ageing of epoxy resin and 3-D carbon fiber/epoxy braided composites, Composites Part A: Applied Science and Manufacturing, Vol. 85, pp. 163-171, 2016.
[25] B. C. Ray, Adhesion of Glass / Epoxy Composites Influenced by Thermal and Cryogenic Environments, Journal of Applied Polymer Science, Vol. 102, No. 2, pp. 1943-1949, 2006.