بررسی نحوه جذب انرژی ساختار متخلخل شوارز پی ساخته شده به روش پرینت سه‌بعدی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران

چکیده

ساختارهای متخلخل به علت عملکرد چندگانه‌ای که دارند مورد توجه پژوهشگران از زمینه‌های مختلف می‌باشند. در این پژوهش نحوه جذب انرژی ساختارهای متخلخل طراحی شده بر اساس سطح مینیمال شوارز پی، مورد بررسی قرار می‌گیرد. به این منظور سه نمونه مکعبی طراحی و مورد تست فشار قرار می‌گیرد. دو نمونه از جنس پلی‌لاکتیتک اسید که یکی از آن­‌ها کاملاً توپر و دومی با پنجاه درصد تخلخل می‌باشد به کمک روش لایه‌­نشانی ذوبی پرینت می‌شود. نمونه سوم از جنس رزین یو وی و با پنجاه درصد تخلخل، به کمک روش استریولیتوگرافی ماسک‌دار ساخته می‌شود. در ادامه هر سه نمونه تحت تست فشار قرار گرفته و نمودارهای نیرو-جابه­‌جا‌یی و همچنین انرژی-جا­به­‌جایی استخراج می‌شود. نتایج به‌دست‌آمده نشان می‌دهد که رفتار نمونه رزینی کاملاً به‌صورت ترد می‌باشد و قابلیت تغییر شکل و جذب انرژی ندارد. در مقابل نمونه متخلخل از جنس پلی‌­لاکتیک اسید تا کرنش 70% تحت تغییر شکل قرار گرفته است. همچنین مقایسه دو نمونه توپر و متخلخل از جنس پلی­‌لاکتیک اسید نشان می‌دهد که مقدار انرژی جذب شده در نمونه متخلخل حدود یک سوم، اما نحوه جذب انرژی در آن به‌صورت نرم و هموار می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the energy absorption quality of the porous Schwarz P structure made by 3D printing method

نویسندگان [English]

  • Seyyed Mohammad Bagher Mirafzali 1
  • Ali Hasanabadi 2
1 Mechanical Engineering Department, University of Birjand, Birjand, Iran
2 Mechanical Engineering Department, University of Birjand, Birjand, Iran
چکیده [English]

Porous structures are of interest to researchers from different fields due to their multiple functions. In this research, the quality of energy absorption of porous structures designed based on Schwarz P minimal surface is investigated. For this purpose, three cubic samples are designed and tested using pressure test. Two samples of polylactic acid, one of which is completely solid and the second with 50% porosity are printed using the fused deposition modeling method. The third sample is made of UV resin with 50% porosity, using the masked stereolithography apparatus. In the following, all three samples are subjected to a pressure test, and force-displacement and energy-displacement diagrams are extracted. The obtained results show that the behavior of the resin sample is completely brittle and does not have ductility and the ability to absorb energy. In contrast, the PLA sample has undergone deformation up to 70% strain. Also, the comparison of two solid and porous polylactic acid samples shows that the amount of energy absorbed in the porous sample is about one-third, but the absorption quality is soft and smooth.

کلیدواژه‌ها [English]

  • Schwarz P Structure
  • Porous Structure
  • Energy Absorption
  • Pressure Test
  • 3D Printing
[1] N. Biswas, J. L. Ding, Numerical study of the deformation and fracture behavior of porous Ti6Al4V alloy under static and dynamic loading, International Journal of Impact Engineering, Vol. 82, pp. 89-102, 2015. https://doi.org/10.1016/j.ijimpeng.2014.08.011
[2] A. Ajdari, H. Nayeb-Hashemi, A. Vaziri, Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures, International Journal of Solids and Structures, Vol. 48, No. 3-4, pp. 506-516, 2011. https://doi.org/10.1016/j.ijsolstr.2010.10.018
[3] D. Ruan, G. Lu, T. Yu, In-plane dynamic crushing of honeycombs - A finite element study, International Journal of Impact Engineering, Vol. 28, No. 2, pp. 161-182, 2003. https://doi.org/10.1016/S0734-743X(02)00056-8
[4] A. Faramarzian Haghighi, A. Haerian Ardakani, M. Kafaee Razavi, A. Moloodi, Simulation of Mechanical Behavior and Construction of Regular PLA Scaffolds, Modares Mechanical Engineering , Vol. 19, No. 8, pp. 1953-1958, 2019. (in Persian)
[5] V. Karageorgiou, D. Kaplan, Porosity of 3D Biomaterial Scaffolds and Osteogenesis, Biomaterials, Vol. 26, No. 27. pp. 5474-5491, 2005. https://doi.org/10.1016/j.biomaterials.2005.02.002
[6] S. Blanquer, M. Werner, M. Hannula, S. Sharifi, G. Lajoinie, D. Eglin, J. Hyttinen, A. Poot, D. Grijpma, Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds, Biofabrication, Vol. 9, No. 2, p. 025001, 2017. https://doi.org/10.1088/1758-5090/aa6553
[7] J. Shin, S. Kim, D. Jeong, H. G. Lee, D. Lee, J. Y. Lim, J. Kim, Finite Element Analysis of Schwarz P Surface Pore Geometries for Tissue-Engineered Scaffolds, Mathematical Problems in Engineering, vol. 2012, p. 694194, 2012. https://doi.org/10.1155/2012/694194
[8] S. Abdulqadir, A. Abdullah, Enhancement of Energy Absorption for Crashworthiness Application: Octagonal-Shape Longitudinal Members, International Journal of Advanced Engineering and Nano Technology, Vol. 2, No. 2, 2015.
[9] J. Contreras Raggio, C. Arancibia, C. Giovanetti, H.L. Ploeg, A. Aiyangar, J. Vivanco, Height-to-Diameter Ratio and Porosity Strongly Influence Bulk Compressive Mechanical Properties of 3D-Printed Polymer Scaffolds, Polymers, Vol. 14, No. 22, p. 5017, 2022. https://doi.org/10.3390/polym14225017
[10] L. Collini, C. Ursini, A. Kumar, Design and optimization of 3D fast printed cellular structures, Material Design & Processing Communications, Vol. 3, No. 4, p. e227, 2021. https://doi.org/10.1002/mdp2.227
[11] R. Ramadani, S. Pal, M. Kegl, J. Predan, D. Igor, S. Pehan, A. Belšak, Topology optimization and additive manufacturing in producing lightweight and low vibration gear body, The International Journal of Advanced Manufacturing Technology, Vol. 113, pp. 3389–3399, 2021. https://doi.org/10.1007/s00170-021-06841-w
[12] A. Hasanabadi, Microstructure design of heterogeneous material using multisided patch, Iranian manufacturing production engineering, Vol. 8, No. 2, pp. 32-40, 2021. (in Persian)
[13] M. Hosseini Vajari, M. Behzadnasab, An experimental investigation on mechanical properties of 3D-printed bio-inspired sandwich panels based on silk cocoon geometry, Iranian Journal of Manufacturing Engineering, Vol. 8, No. 4, pp. 19-26, 2021. (in Persian)
[14] M. Hosseini vajari, H. Moradi Nasab, M. Behzadnasab, M. Nikkhah Shahmirzadi, M. Soltani, Investigating the mechanical behavior of the infinity structure inspired by the silkworm cocoon and comparing it with the rod structure for use in architectural cellular structures, Iranian Journal of Manufacturing Engineering, Vol. 9, No. 6, pp. 11-23, 2022. (in Persian)
[15] Z.y. Zhang, H. Zhang, J. Zhang, S.k. Qin, M.d. Duan, Study on flow field characteristics of TPMS porous materials, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 45, p. 188, 2023. https://doi.org/10.1007/s40430-023-04113-0
[16] M. Flores-Jimenez, R. Fuentes-Aguilar, A. García-González, Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach, ACS Applied Bio Materials, Vol.6, No. 1, pp. 1-23, 2023. https://doi.org/10.1021/acsabm.2c00740
[17] M. Flores-Jimenez and R. Fuentes-Aguilar, Bone Tissue Scaffolds Designed With A Porosity Gradient Based On Triply Periodic Minimal Surfaces Using A Parametric Approach, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2021.
[18] P. Charrot, J. Gregory, A pentagonal surface patch for computer aided geometric design, Computer Aided Geometric Design, Vol. 1, No. 1, pp. 87-94, 1984. https://doi.org/10.1016/0167-8396(84)90006-2
[19] S. M. B. Mirafzali and A. Hasanabadi, Geometric Modeling of Functionally Graded Material Structures Using Multisided Patch, The 10th International Conference on Materials and Metallurgical Engineering, Online Tehran, Novamber 16-17, 2021.
[20] S. Yu, J. Sun, J. Bai, Investigation of functionally graded TPMS structures fabricated by additive manufacturing, Materials & Design, Vol. 182, p. 108021, 2019. https://doi.org/10.1016/j.matdes.2019.108021
[21] N. Shahrubudin, T. C. Lee, R. Ramlan, An Overview on 3D Printing Technology: Technological, Materials, and Applications, Procedia Manufacturing, Vol. 35, pp. 1286-1296, 2019. https://doi.org/10.1016/j.promfg.2019.06.089
[22] H. Kamel, O. Harraz, Developing an Optimized Low-Cost Transtibial Energy Storage and Release Prosthetic Foot Using Three-Dimensional Printing, ASME J of Medical Diagnostics, Vol. 3, No. 2, p. 021103, 2020. https://doi.org/10.1115/1.4046319
[23] H. Balakrishnan, A. Hassan, M. Imran, M. U. Wahit, Toughening of Polylactic Acid Nanocomposites: A Short Review, Polymer-plastics Technology and Engineering, Vol. 51, No. 2, pp. 175-192, 2012. https://doi.org/10.1080/03602559.2011.618329
[24] F. Vieira, A. Scari, P. Junior, J. Ribeiro, C. Magalhães, Analysis of Stresses in a Tapered Roller Bearing Using Three-Dimensional Photoelasticity and Stereolithography, Materials, Vol. 12, No. 20, p. 3427, 2019. https://doi.org/10.3390/ma12203427
[25] I. Ahmed, K. Sullivan, A. Priye, Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components, Biosensors, Vol. 12, No. 8, p. 652, 2022. https://doi.org/10.3390/bios12080652