بررسی خواص مکانیکی، حرارتی و ریزساختار ترکیب پلی آمید6/آکریلونیتریل بوتادین تقویت‌شده با نانوذرات کاربید سیلیسیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه شهید بهشتی، تهران، ایران

چکیده

در این مقاله، از فرایند اصطکاکی اغتشاشی (FSP) برای افزودن درصدهای وزنی متنوع از نانوذرات کاربید سیلیسیم (SiC) به فاز پایه PA6/NBR استفاده شد. همچنین به کمک روش سطح پاسخ (RSM) براساس طرح باکس-بنکن، تأثیر سه متغیر سرعت چرخش ابزار دورانی (ω)، سرعت خطی ابزار (V) و درصد وزنی نانوذره کاربید سیلیسیم (S) بر خواص مکانیکی (مدول یانگ و استحکام ضربه­‌ای) مورد بررسی قرار گرفت. به منظور چگونگی پراکندگی نانوذرات در فاز پایه و اثر افزودن آن­‌ها بر ریزساختار ترموپلاستیک الاستومر PA6/NBR، از تصاویر میکروسکوپ الکترونی روبشی (SEM) بهره گرفته شد. علاوه بر این، با استفاده از آزمون­‌های گرماسنجی تفاضلی روبشی (DSC) و آنالیز حرارتی (TGA)، خواص حرارتی نمونه‌­های PA6/NBR/SiC با درصدهای مختلف وزنی از نانوذرات کاربید سیلیسیم بررسی شد. مقادیر به دست آمده از معادلات رگرسیون نشان داد در شرایطی که سرعت چرخش ابزار دورانی 1200 دور بر دقیقه، سرعت خطی ابزار 20 میلی‌متر بر دقیقه و مقدار درصد وزنی نانوذره استفاده شده 8/3 باشد، حداکثر مدول یانگ و استحکام ضربه‌­ای به ترتیب 18/665 مگاپاسکال و 26/62 ژول بر متر به دست خواهد آمد؛ همچنین دمای تبلور و دمای ذوب نیز به ترتیب تا مقادیر 198 و 8/222 درجه سانتی­‌گراد افزایش خواهد یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of mechanical, thermal and microstructural properties of PA6/NBR nanocomposites reinforced with silicon carbide nanoparticles

نویسندگان [English]

  • Hadi Soleymani 1
  • Mohammad Reza Nakhaei 2
1 Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
2 Faculty of Mechanics and Energy, Shahid Beheshti University, Tehran, Iran
چکیده [English]

In this article, the friction stir process (FSP) was used to add various weight percentages of silicon carbide (SiC) nanoparticles to the base phase of PA6/NBR. Also, the effect of three variables of the rotation speed tool (ω), traverse speed (V) and the weight percentage of silicon carbide nanoparticle (S) on the mechanical properties (young’s modulus and impact strength) were investigated by response surface methodology (RSM) based on the Box-Behnken design. Scanning electron microscope (SEM) was used to determine the dispersion of nanoparticles in the base phase and the effect of their addition on the microstructure of PA6/NBR thermoplastic elastomer. Moreover, the thermal properties of PA6/NBR/SiC samples with different weight percentages of silicon carbide nanoparticles were investigated by differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). The values obtained from the regression equations showed that, under optimal conditions of the rotational speed of 1200 rpm, traverse speed of 20 mm/min and the weight percentage of nanoparticles of 3.8 wt. %, the maximum young's modulus and impact strength 665.18 MPa and 62.26 J/m, respectively could be obtained. Also the crystallization and melting temperature increased to 198 and 222.8 °C, respectively.

کلیدواژه‌ها [English]

  • Polyamide 6
  • Acrylonitrile Butadiene Rubber
  • Silicon Carbide
  • Friction Stir Process
  • Response Surface Methodology
[1] M. R. Nakhaei, A. Ghorbankhan, Experimental investigation on mechanical properties of PA6/NBR/Graphene nanocomposite by response surface methodology, Karafan Quarterly Scientific Journal, Vol. 18, No. 3, pp. 327-341, 2021. (in Persian). https://doi.org/10.48301/KSSA.2021.275252.1405
[2] B. Asadi Boroojeni, L. Mozafari Vanani, The effect of tool geometry on the tensile strength of polypropylene components welded by friction Stir welding method, Karafan Quarterly Scientific Journal, Vol. 17, No. 1, pp. 133-145, 2020. (in Persian). https://doi.org/10.48301/KSSA.2020.112761
[3] M. R. Nakhaei, G. Naderi, A. Ebrahimpour, Mathematical modeling of mechanical properties of PA6/NBR/Clay nanocomposites fabrication using the thermal friction stirs processing, Journal of Science and Technology of Composites, Vol. 7, No. 2, pp. 833-842, 2020. (in Persian). https://doi.org/10.22068/jstc.2020.112864.1582
[4] E. Esmizadeh, A. Irani, G. Naderi, M. H. R. Ghoreishy, C. Dobious, Effect of carbon nanotube on PA6/ECO composites: Morphology development, rheological, and thermal properties, Journal of applied polymer science, Vol. 135, No. 12, pp. 45977, 2018. https://doi.org/10.1002/app.45977
[5] M. R. Nakhaei, S. Mohammadi, G. Naderi, M. H. Ghoreishy, Experimental study of microstructure, thermal and mechanical properties of PA6/NBR nanocomposites reinforced with graphene nanoparticle, Journal of Science and Technology of Composites, Vol. 6, No. 3, pp. 419-426, 2019. (in Persian). https://doi.org/10.22068/jstc.2019.97568.1491
[6] W. Poon, E. Ching, C Cheng, R. Li, Measurement of plane stress essential work of fracture (EWF) for polymer films: effects of gripping and notching methodology, Polymer Testing, Vol. 20, No. 4, pp. 395-401, 2001. https://doi.org/10.1016/S0142-9418(00)00049-0
[7] A. Ghorbankhan, M. R. Nakhaei, P. Safarpour, 2021. Modeling and optimization of mechanical properties of PA6/NBR nanocomposite reinforced with perlite nanoparticle, Journal of Science and Technology of Composites, Vol. 8, No. 1, pp. 1421-1430, 2021. (in Persian). https://doi.org/10.22068/JSTC.2021.527365.1714
[8] M. R. Nakhaei, G. Naderi, M. H. R. Ghoreishy, Fracture mechanisms and failure analysis of PA6/NBR/graphene nanocomposites by essential work of fracture, Iranian Polymer Journal, Vol. 30, No. 9, pp. 975-987, 2021. https://doi.org/10.1007/s13726-021-00950-9
[9] E. Taghizadeh, G. Naderi, M. Razavi-Nouri, Effects of organoclay on the mechanical properties and microstructure of PA6/ECO blend, Polymer Testing, Vol. 30, No. 3, pp. 327-334, 2011. https://doi.org/10.1016/j.polymertesting.2011.01.007
[10] R. Wu, K. Zhou, C. Y. Yue, J. Wei, Y. Pan, Recent progress in synthesis, properties and potential applications of SiC nanomaterials, Progress in Materials Science, Vol. 72, pp. 1-60, 2015. https://doi.org/10.1016/j.pmatsci.2015.01.003
[11] M. Naeimirad, A. Zadhoush, R. E. Neisiany, Fabrication and characterization of silicon carbide/epoxy nanocomposite using silicon carbide nanowhisker and nanoparticle reinforcements, Journal of composite materials, Vol. 50, No. 4, pp. 435-446, 2016. https://doi.org/10.1177/002199831557637
[12] M. R. Nakhaei, G. Naderi, M. H. R. Ghoreishy, Experimental investigation of mechanical properties, fracture mechanism and crack propagation of PA6/NBR/Clay nanocomposites, Iranian Journal of Polymer Science and Technology, Vol. 33, No. 2, pp. 159-172, 2020. (in Persian). https://doi.org/1732.2020.JIPST/22063.1
[13] R. F. Zinati, M. Razfar, H. Nazockdast, Numerical and experimental investigation of FSP of PA6/MWCNT composite, Journal of Materials Processing Technology, Vol. 214, No. 11, pp. 2300-2315, 2014. https://doi.org/10.1016/j.jmatprotec.2014.04.026
[14] M. R. Nakhaei, A. Mostafapour, G. Naderi, Optimization of mechanical properties of PP/EPDM/clay nanocomposite fabricated by friction stir processing with response surface methodology and neural networks, Polymer Composites, Vol. 38, pp. 421-432. 2017.  https://doi.org/10.1002/pc.23942
[15] A. Ghorbankhan, M. R. Nakhaei, Microstructure and mechanical properties of PA6/NBR nanocomposites fabricated by friction stir processing, International Journal of Engineering, Vol. 34, No. 10, pp. 2371-2378, 2021. https://doi.org/10.5829/IJE.2021.34.10A.18
[16] A. Ghorbankhan, M. R. Nakhaei, G. Naderi, Prediction and optimization of mechanical properties of PA6/NBR/graphene nanocomposites fabricated by friction stir processing, Journal of Elastomers & Plastics, Vol. 54, No. 1, pp. 67-85, 2022. https://doi.org/10.1177/00952443211020049
[17] A. A. Shokri, S. Talebi, M. Salami-Kalajahi, Optimization of 1, 3-butadiene monomer coordination polymerization using response surface methodology (RSM), Polyolefins Journal, Vol. 8, No. 2, pp. 63-72. 2021. https://doi.org/10.22063/POJ.2021.2767.1166
[18] A. Asgari Aghdam, Y. Dadgar Asl, M. Sheikhi, Investigation of the effect of process variables on the mechanical properties of printed parts made of polyoxymethylene using a 3D printer by Fused Deposition Modeling (FDM), Karafan Quarterly Scientific Journal, Vol. 18, No. 1, pp. 169-188, 2021. (in Persian). https://doi.org/10.48301/KSSA.2021.131056
[19] M. Haghnegahdar, G. Naderi, M. Ghoreishy, Fracture toughness and deformation mechanism of un-vulcanized and dynamically vulcanized polypropylene/ethylene propylene diene monomer/graphene nanocomposites, Composites Science and Technology, Vol. 141, pp. 83-98, 2017. https://doi.org/10.1016/j.compscitech.2017.01.015
[20] F. A. Ghasemi, M. N. Niyaraki, I. Ghasemi, S. Daneshpayeh, Predicting the tensile strength and elongation at break of PP/graphene/glass fiber/EPDM nanocomposites using response surface methodology, Mechanics of Advanced Materials and Structures, Vol. 28, No. 10, pp. 981-989, 2021. https://doi.org/10.1080/15376494.2019.1614702
[21] T. Azdast, R. Hasanzadeh, Tensile and morphological properties of microcellular polymeric nanocomposite foams reinforced with multi-walled carbon nanotubes, International Journal of Engineering, Vol. 31, No. 3, pp. 504-510, 2018. https://doi.org/10.5829/ije.2018.31.03c.14
[22] A. S. Bhurke, E. E. Shin, L. T. Drzal, Fracture morphology and fracture toughness measurement of polymer-modified asphalt concrete, Transportation Research Record, Vol. 1590, No. 1, pp. 23-33, 1997. https://doi.org/10.3141/1590-04
[23] F. Ashenai Ghasemi, S. Daneshpayeh, I. Ghasemi, M. Ayaz, An investigation on the young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/titan dioxide (PP/LLDPE/TiO2) using response surface methodology, Polymer Bulletin, Vol. 73, pp. 1741-1760, 2016. https://doi.org/10.1007/s00289-015-1574-2
[24] P. Mahallati, A. Arefazar, G. Naderi, Thermal and morphological properties of thermoplastic elastomer nanocomposites based on PA6/NBR, Iranian Journal of Chemical Engineering, Vol. 8, No. 1, pp. 56-65, 2011. https://doi.org/10.3139/217.2311
[25] R. Sahraeian, M. Esfandeh, S. Hashemi, Rheological, thermal and dynamic mechanical studies of the LDPE/perlite nanocomposites, Polymers and Polymer Composites, Vol. 21, No. 4, pp. 243-250, 2013. https://doi.org/10.1177/096739111302100406
[26] S. Gomari, I. Ghasemi, M. Karrabi, H. Azizi, An investigation on non-isothermal crystallization behavior and morphology of polyamide 6/ poly(ethyleneco-1-butene)-graft-maleic anhydride/organoclay nanocomposites, Polyolefins Journal, Vol. 2, No. 2, pp. 99-108, 2015. https://doi.org/10.22063/POJ.2015.1164