استفاده از الگوریتم بهینه‌سازی زنبورعسل، کلاغ و الگوریتم ژنتیک در شناسایی و بهینه‌سازی پارامترهای دینامیکی ربات لامسه‌ای و دست کاربر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران

2 کارشناس ارشد، گروه مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران

چکیده

ربات‌های لامسه‌ای جهت شبیه‌سازی اجسام مجازی برای کاربر آن مورد استفاده قرار می‌گیرند. دینامیک ربات لامسه‌ای و دست کاربر، تأثیر به‌سزایی در پایداری و عملکرد ربات لامسه‌ای دارند. در این پژوهش شناسایی دینامیک دست کاربر و ربات لامسه‌ای با استفاده از روش‌های بهینه‌سازی کلونی زنبورعسل مصنوعی، الگوریتم بهینه‌سازی کلاغ و الگوریتم ژنتیک، طی آزمایش‌هایی در دو حالت انجام‌ شده است. در حالت اول صرفاً دینامیک ربات لامسه‌ای شناسایی‌شده، سپس در حالت دوم روش‌های مذکور برای شناسایی هم‌زمان دینامیک دست کاربر و ربات لامسه‌ای تعمیم داده ‌شده‌اند. برای این منظور ابتدا در هر حالت مرز پایداری تئوری به‌صورت تابعی از پارامترهای دینامیکی موجود به‌دست ‌آمده است؛ سپس با انجام آزمایش‌هایی برای روی ربات کوکا سبک ‌وزن 4 در دو حالت حضور و عدم حضور دست کاربر، مرز پایداری تجربی به‌دست‌آمده است. در ادامه با استفاده از روش بهینه‌سازی کلونی زنبورعسل مصنوعی، کلاغ و همچنین الگوریتم ژنتیک، در هر حالت پارامترهای دینامیکی مورد نظر به‌گونه‌ای به‌دست‌آمده‌اند که اختلاف بین مرز پایداری به‌دست‌آمده تئوری و تجربی حداقل شود. بررسی‌ها نشان می‌دهند درحالی‌که هر سه روش به‌خوبی توانسته‌اند شناسایی پارامترها را انجام دهند، روش الگوریتم ژنتیک در این زمینه خطای کمتری را ایجاد کرده و عملکرد بهتری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Using the artificial bee colony optimization, crow, and genetic algorithm for identifying and optimizing the dynamic parameters of a haptic device and operator’s hand

نویسندگان [English]

  • Ahmad Mashayekhi 1
  • Emad Imanian 2
  • Vahid Modanloo 1
  • Behnam Akhoundi 1
1 Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran
2 Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran
چکیده [English]

Haptic Devices (HDs) are used to simulate virtual objects for the user. The dynamics of the HD and the opertator’s hand have a great effect on the stability and performance of the HD. In this research, the dynamic identification of the user's hand and HD has been done using methods of Artificial Bee Colony Optimization (ABCO), Crow Search Algorithm (CSA), and Genetic Algorithm (GA), during experiments in two cases. In the first case, only the dynamics of the HD has been identified, then in the second case, the mentioned methods have been generalized for the simultaneous recognition of the dynamics of the user's hand and the HD. For this purpose, first, in each case, the theoretical stability boundary is obtained as a function of the available dynamic parameters. Then, by performing experiments on the KUKA Light Weight 4 robot in two cases of presence and absence of the operator’s hand, the experimental stability boundary has been obtained. Afterwards, by using ABCO, CSA, and GA in each case the desired dynamic parameters are obtained in such a way that the difference between the theoretical and experimental stability boundary is minimized. Studies show that while all three methods have been able to identify the parameters well, the GA method produces less error and has a better performance in this field.

کلیدواژه‌ها [English]

  • Artificial bee colony optimization
  • Crow search algorithm
  • Genetic Algorithm
  • Haptic device
  • Stability
  • Dynamic parameter identification
[1] L. Li, F. Yu, D. Shi, J. Shi, Z. Tian, J. Yang, X. Wang, Q. Jiang, Application of virtual reality technology in clinical medicine, American journal of translational research, vol. 9, pp. 3867, 2017.
[2] H. Y. B. Tse, Dental training system using haptic technology, 2008.
[3] Z. Xu, H. Yu, S. Yan, Motor rehabilitation training after stroke using haptic handwriting and games, in Proceedings of the 4th International Convention on Rehabilitation Engineering & Assistive Technology, 2010, pp. 1-4. https://doi.org/10.1145/2503713.2503738
[4] W. Yu, R. Ramloll, S. Brewster, Haptic graphs for blind computer users, in International workshop on haptic human-computer interaction, 2000, pp. 41-51. https://doi.org/10.1007/3-540-44589-7_5
[5] Q. V. Dang, L. Vermeiren, A. Dequidt, M. Dambrine, Analyzing stability of haptic interface using linear matrix inequality approach, in 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012, pp. 1129-1134. http://doi.org/10.1109/ROBIO.2012.6491121
[6] J. J. Gil, E. Sánchez, T. Hulin, C. Preusche, G. Hirzinger, Stability boundary for haptic rendering: Influence of damping and delay, Journal of Computing and Information Science in Engineering, vol. 9, 2009. https://doi.org/10.1115/1.3074283
[7] T. Hulin, A. Albu-Schäffer, G. Hirzinger, Passivity and stability boundaries for haptic systems with time delay, IEEE Transactions on Control Systems Technology, vol. 22, pp. 1297-1309, 2013. https://doi.org/10.1109/TCST.2013.2283372
[8] A. Mashayekhi, S. Behbahani, F. Ficuciello, B. Siciliano, Influence of human operator on stability of haptic rendering: a closed-form equation, International Journal of Intelligent Robotics and Applications, vol. 4, pp. 403-415, 2020. https://doi.org/10.1007/s41315-020-00131-6
[9] M. Minsky, O.y. Ming, O. Steele, F. P. Brooks Jr, M. Behensky, Feeling and seeing: issues in force display, in Proceedings of the 1990 symposium on Interactive 3D graphics, 1990, pp. 235-241.
[10] J. J. Gil, A. Avello, A. Rubio, J. Florez, Stability analysis of a 1 dof haptic interface using the routh-hurwitz criterion, IEEE transactions on control systems technology, vol. 12, pp. 583-588, 2004. http://doi.org/10.1109/TCST.2004.825134
[11] A. Mashayekhi, S. Behbahani, F. Ficuciello, B. Siciliano, A novel Lyapunov function for stability of haptic device in simulating virtual objects, Modares Mechanical Engineering, vol. 17, pp. 367-374, 2018. (in Persian)
[12] A. Mashayekhi, S. Behbahani, F. Ficuciello, B. Siciliano, Analytical stability criterion in haptic rendering: The role of damping, IEEE/ASME Transactions on Mechatronics, vol. 23, pp. 596-603, 2018. http://doi.org/10.1109/TMECH.2018.2797688
[13] A. Mashayekhi, S. Behbahani, F. Ficuciello, B. Siciliano, Delay-dependent stability analysis in haptic rendering, Journal of Intelligent & Robotic Systems, vol. 97, pp. 33-45, 2020. https://doi.org/10.1007/s10846-019-01017-x
[14] Z. Han, M. Chen, S. Shao, Q. Wu, Improved artificial bee colony algorithm-based path planning of unmanned autonomous helicopter using multi-strategy evolutionary learning, Aerospace Science and Technology, vol. 122, p. 107374, 2022. https://doi.org/10.1016/j.ast.2022.107374
[15] A. G. Hussien, M. Amin, M. Wang, G. Liang, A. Alsanad, A. Gumaei, H. Chen, Crow search algorithm: theory, recent advances, and applications, IEEE Access, vol. 8, pp. 173548-173565, 2020. http://doi.org/10.1109/ACCESS.2020.3024108
[16] H. Liu, Research on cloud computing adaptive task scheduling based on ant colony algorithm, Optik, vol. 258, p. 168677, 2022. https://doi.org/10.1016/j.ijleo.2022.168677
[17] J. Peng, Y. Li, H. Kang, Y. Shen, X. Sun, Q. Chen, Impact of population topology on particle swarm optimization and its variants: An information propagation perspective, Swarm and Evolutionary Computation, vol. 69, p. 100990, 2022. https://doi.org/10.1016/j.swevo.2021.100990
[18] B. Yang, X. Huang, W. Cheng, T. Huang, X. Li, Discrete bacterial foraging optimization for community detection in networks, Future Generation Computer Systems, vol. 128, pp. 192-204, 2022. https://doi.org/10.1016/j.future.2021.10.015
[19] Y. Liu, X. Feng, Y. Yang, Z. Ruan, L. Zhang, K. Li, Solving urban electric transit network problem by integrating Pareto artificial fish swarm algorithm and genetic algorithm, Journal of Intelligent Transportation Systems, vol. 26, pp. 253-268, 2022. https://doi.org/10.1080/15472450.2020.1848561
[20] T. Yoshikawa, Y. Ichinoo, Impedance identification of human fingers using virtual task environment, in Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), 2003, pp. 759-764. http://doi.org/ 10.1109/AIM.2003.1225438
[21] R. G. Dong, J. H. Dong, J. Z. Wu, S. Rakheja, Modeling of biodynamic responses distributed at the fingers and the palm of the human hand–arm system, Journal of Biomechanics, vol. 40, pp. 2335-2340, 2007. https://doi.org/10.1016/j.jbiomech.2006.10.031
[22] A. Z. Hajian, R. D. Howe, Identification of the mechanical impedance at the human finger tip, Journal of Biomechanical Engineering, ASEM, 1997. https://doi.org/10.1115/1.2796052
[23] J. E. Speich, L. Shao, M. Goldfarb, Modeling the human hand as it interacts with a telemanipulation system, Mechatronics, vol. 15, pp. 1127-1142, 2005. https://doi.org/10.1016/j.mechatronics.2005.06.001
[24] A. Karami, A. Mashayekhi, Stability analysis of multi-DOF haptic robots and comparing it with its equivalent model, presented at the 30th Annual International Conference on Mechanical Engineering, 2022. https://doi.org/10.1109/ICRoM57054.2022.10025192
[25] A. Mashayekhi, M. Shakeri, S. Behbahani, A. Nahvi, M. Keshmiri, Simplification of a Multi-DOF haptic device and its effect on stability, presented at the 6th National Conference on Mechanical and Aerospace Engineering, 1400.
[26] D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical report-tr06, Erciyes university, engineering faculty, computer, 2005.
[27] Ş. Öztürk, R. Ahmad, N. Akhtar, Variants of Artificial Bee Colony algorithm and its applications in medical image processing, Applied soft computing, vol. 97, p. 106799, 2020. https://doi.org/10.1016/j.asoc.2020.106799
[28] S. Okdem, D. Karaboga, C. Ozturk, An application of wireless sensor network routing based on artificial bee colony algorithm, in 2011 IEEE Congress of Evolutionary Computation (CEC), 2011, pp. 326-330. https://doi.org/10.1109/CEC.2011.5949636
[29] H. Gao, Y. Shi, C.M. Pun, S. Kwong, An improved artificial bee colony algorithm with its application,
IEEE Transactions on Industrial Informatics, vol. 15, pp. 1853-1865, 2018. https://doi.org/10.1109/TII.2018.2857198
[30] Q. Cheng, H. Huang, M. Chen, A Novel Crow Search Algorithm Based on Improved Flower Pollination, Mathematical Problems in Engineering, vol. 2021, pp. 1-26, 2021. https://doi.org/10.1155/2021/1048879
[31] F. Duan, F. Song, S. Chen, M. Khayatnezhad, N. Ghadimi, Model parameters identification of the PEMFCs using an improved design of Crow Search Algorithm, International Journal of Hydrogen Energy, vol. 47, pp. 33839-33849, 2022. https://doi.org/10.1016/j.ijhydene.2022.07.251
[32] X. Lu, D. Kanghong, L. Guo, P. Wang, A. Yildizbasi, Optimal estimation of the Proton Exchange Membrane Fuel Cell model parameters based on extended version of Crow Search Algorithm, Journal of Cleaner Production, vol. 272, p. 122640, 2020. https://doi.org/10.1016/j.jclepro.2020.122640
[33] D. G. Gracia-Velásquez, A. S. Morales-Rodríguez, O. D. Montoya, Application of the Crow Search Algorithm to the Problem of the Parametric Estimation in Transformers Considering Voltage and Current Measures, Computers, vol. 11, p. 9, 2022. https://doi.org/10.3390/computers11010009
[34] M. A. Tavouli, N. Namazi, A. Darvizeh, H. Babaei, F. Abdolkamali, R. Rajabie Fard, Experimental investigation and numerical modelling of dynamic compaction process of pure iron powder with ceramic particles, Iranian Journal of Manufacturing Engineering, Vol. 3, No. 3, pp. 20-28, 2017 (in Persian).
[35] K. Alinaghi, S. Golabi, Minimizing piston mass of Neuman Esser reciprocating compressors using genetic algorithm, Iranian Journal of Manufacturing Engineering, vol. 8, pp. 30-42, 2021 (in Persian).
[36] M. M. Moghadam, M. Modabberifar, B. Mirzakhani, Design of a new actuator for actuating a linear hydraulic valve and its optimization with genetic algorithm, Iranian Journal of Manufacturing Engineering, vol. 4, pp. 1-9, 2017 (in Persian).