کمینه‌سازی نیروی لازم شکل‌دهی در فرایند هیدروفرمینگ ورق با استفاده از طرح عاملی کسری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران

چکیده

شکل‌دهی مطلوب قطعات فلزی با استفاده از حداقل نیروی لازم، همواره مورد توجه پژوهش‌گران بوده است. در این مقاله، پارامترهای مؤثر در فرایند کشش عمیق هیدرودینامیکی با فشار شعاعی به‌منظور تولید قطعات استوانه‌ای با پیشانی تخت با حداقل نیروی لازم شکل‌دهی مورد بررسی قرار گرفته است. در ابتدا با استفاده از روش طراحی آزمایش عاملی کسری، آزمایش‌های مورد نیاز طراحی شدند. در این طراحی، فشار بیشینه سیال، سرعت سنبه، شعاع گوشه سنبه، ضریب اصطکاک بین ورق با سنبه، ضریب اصطکاک بین ورق با قالب و شعاع گوشه ماتریس به‌عنوان متغیرهای ورودی در نظر گرفته شدند. آزمایش‌های طراحی‌شده به کمک مدل اجزای محدود صحت‌سنجی شده اجرا شده و بیشینه نیروی سنبه برای هر آزمایش استخراج گردید. در پایان، با انجام تحلیل واریانس، اثرات اصلی و متقابل پارامترها بر روی تابع بیشینه نیروی سنبه مشخص گردید. با بررسی نتایج، مشخص شد که فشار بیشینه سیال و شعاع گوشه سنبه بیشترین تأثیر را بر روی بیشینه نیروی سنبه دارند. کاهش فشار بیشینه سیال از 39 تا 15 مگاپاسکال، منجر به کاهش بیشینه نیروی سنبه به میزان 55% می‌شود. همچنین، کاهش شعاع گوشه سنبه از 10 تا 2 میلی‌متر، منجر به کاهش بیشینه نیروی سنبه به میزان 55% می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Minimizing the required forming force in the sheet hydroforming process using a fractional factorial design

نویسندگان [English]

  • Vahid Modanloo 1
  • Behnam Akhoundi 1
  • Yaghoub Dadgar Asl 2
1 Mechanical Engineering Department, Sirjan University of Technology, Sirjan, Iran
2 Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
چکیده [English]

The optimal forming of the metallic parts with the lowest required forming force has always been the focus of researchers. In this paper, effective parameters in hydrodynamic deep drawing assisted by radial pressure of cylindrical cups with a flat head with minimum required forming force have been investigated. At first, the necessary experiments were designed using the fractional factorial design of experiment. In this design, maximum fluid pressure, punch velocity, punch nose radius, friction coefficient between punch and sheet, friction coefficient between die and sheet, and die entrance radius were considered input variables. An experimentally validated finite element model was used for performing the designed experiments and extracting the maximum punch force for each experiment. Finally, by using analysis of variance, the main and the interaction effects of the parameters on the maximum punch force were determined. Results showed that the maximum fluid pressure and punch nose radius have the highest influence on the maximum punch force. Decreasing the maximum fluid pressure from 39 to 15 MPa, leads to a decrease of 55% in the maximum punch force. Also, by reducing the punch nose radius from 10 to 2 mm, the maximum punch force decreases by 55%.

کلیدواژه‌ها [English]

  • Sheet Hydroforming
  • Punch Force
  • Fractional Factorial Design
  • Finite Element Simulation
[1] Y. Gholiyan, M. Elyasi, M. J. Mirnia, Study of fluid pressure on formability of metal sheets by using fixed and pulsating sheet hydroforming method, Iranian journal of Marine technology, vol. 8, No. 1, pp. 23-29, 2021. (in Persian) https://doi.org/10.22034/ijmt.2021.40609
[2] P. Ghanbari, B. Akhoundi, V. Modanloo, Numerical analysis of forming the tri-layer non-homogeneous bellows via the hydroforming process, Trends in Computer Science and Information Technology, Vol. 8, No. 1, pp. 016-022, 2023. https://doi.org/10.17352/tcsit.000064
[3] V. Modanloo, A. Gorji, M. Bakhshi, Experimental and numerical investigation of the sheet forming in hydroforming process, Journal of Solid and Fluid Mechanics, Vol. 5, No. 4, pp. 27-33, 2015. (in Persian) https://doi.org/10.22044/jsfm.2015.566
[4] S. M. Hejazi Alhossini, M. Elyasi, M. J. Mirnia, Effect of heat treatment on formability of AA6061 aluminum alloy in the sheet hydroforming process, Iranian journal of Marine technology, Vol. 7, No. 3, pp. 39-50, 2020. (in Persian)
[5] R. Ghasemi, M. Elyasi, H. Baseri, M. J. Mirnia, Microstructural analysis of sheet hydroforming process assisted by radial ultrasonic punch vibration in a hydro-mechanical deep drawing die, The International Journal of Advanced Manufacturing Technology, Vol. 125, No. 11-12, pp. 5359-5368, 2023. https://doi.org/10.1007/s00170-023-11007-x
[6] V. Modanloo, B. Akhoundi, A. Mashayekhi, H. Talebi-Ghadikolaee, A. Zeinolabedin Beygi, The study of forming of steel cups using hydrodynamic deep drawing process, Iranian Journal of Manufacturing Engineering, Vol. 9, No. 8, pp. 56-64, 2022. (in Persian) https://doi.org/10.22034/ijme.2023.385634.1748
[7] M. Salahshoor, A. Gorji, M. B. Jooybari, The study of forming concave-bottom cylindrical parts in hydroforming process, The International Journal of Advanced Manufacturing Technology, Vol. 79, pp. 1139-1151, 2015. https://doi.org/10.1007/s00170-015-6908-6
[8] M. Salahshoor, H. Gorji, M. Bakhshi-Jooybari, Analysis of the effects of tool and process parameters in hydrodynamic deep drawing assisted by radial pressure, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 41, pp. 1-16, 2019. https://doi.org/10.1007/s40430-019-1648-4
[9] V. Modanloo, V. Alimirzaloo, M. Elyasi, Optimal design of stamping process for fabrication of titanium bipolar plates using the integration of finite element and response surface methods, Arabian Journal for Science and Engineering, Vol. 45, pp. 1097-11017, 2020. https://doi.org/10.1007/s13369-019-04232-8
[10] Z. Zhang, F. Xu, X. Sun, Optimization of process parameters during hydroforming of tank bottom using NSGA-III algorithm, The International Journal of Advanced Manufacturing Technology, Vol. 119, No. 5-6, pp. 4043-4055, 2022. https://doi.org/10.1007/s00170-021-08057-4
[11] V. Modanloo, A. Gorji, M. Bakhshi-Jooybari, A comprehensive thinning analysis for hydrodynamic deep drawing assisted by radial pressure, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, Vol. 43, pp. 487-494, 2019. https://doi.org/10.1007/s40997-018-0221-6
[12] M. Türköz, H.S. Halkacı, An investigation of the effect of temperature variability of the tools on FEA of the warm hydromechanical deep drawing process, SN Applied Sciences, Vol. 2, No. 12, pp. 1939, 2020. https://doi.org/10.1007/s42452-020-03771-2
[13] V. Alimirzaloo, V. Modanloo, Minimization of the sheet thinning in hydraulic deep drawing process using response surface methodology and finite element method, International Journal of Engineering, Vol. 29, No. 2, pp. 264-273, 2016. https://doi.org/10.5829/idosi.ije.2016.29.02b.16
[14] A. Yaghoobi, A. Gorji, M. Bakhshi-Jooybari, H. Baseri, Artificial intelligence approach to predict thinning in the hydroforming process, Advances in Materials and Processing Technologies, Vol. 2, No. 2, pp. 252-257, 2016. https://doi.org/10.1080/2374068X.2016.1164530
[15] V. Modanloo, A. Doniavi, R. Hasanzadeh, Application of multi criteria decision making methods to select sheet hydroforming process parameters, Decision Science Letters, Vol. 5, No. 3, pp. 349-360, 2016. https://doi.org/10.5267/j.dsl.2016.2.005
[16] A. Hashemi, M. Hoseinpour-Gollo, S.H. Seyedkashi, A. Pourkamali-Anaraki, A new simulation-based metaheuristic approach in optimization of bilayer composite sheet hydroforming, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 39, pp. 4011-4020, 2017. https://doi.org/10.1007/s40430-017-0720-1
[17] M. Haghgoo, T. Mirzababaie Mostofi, M. Miralinaghi, H. Babaei, Using GMDH-type neural network model to predict the response of triangular plates under the hydrodynamic loading, Journal of Solid and Fluid Mechanics, Vol. 10, No. 3, pp. 233-243, 2020. https://doi.org/10.22044/jsfm.2020.9237.3087
[18] R. Mousavipoor, A. Gorji, M. Bakhshi, Optimization of the Initial Blank Shape in hydroforming Double-Stepped Parts, Journal of Solid and Fluid Mechanics, Vol. 5, No. 3, pp. 137-149, 2015. (in Persian) https://doi.org/10.22044/jsfm.2015.582
[19] A.H. Rabiee, E. Sherkatghanad, A. Zeinolabedin Beygi, H. Moslemi Naeini, L. Lang, Experimental investigation and modeling of fiber metal laminates hydroforming process by GWO optimized neuro-fuzzy network, Journal of Computational & Applied Research in Mechanical Engineering (JCARME), Vol. 12, No. 2, pp. 193-209, 2023. https://doi.org/10.22061/jcarme.2022.8268.2101
[20] D.C. Montgomery, Design and analysis of experiments, John wiley & sons, 2017.
[21] J.D. Kechagias, K.E. Aslani, N.A. Fountas, N.M. Vaxevanidis, D.E. Manolakos, A comparative investigation of Taguchi and full factorial design for machinability prediction in turning of a titanium alloy, Measurement, Vol. 151, pp. 107213, 2020. https://doi.org/10.1016/j.measurement.2019.107213
[22] M. Moradian, A. Doniavi, V. Modanloo, V. Alimirzaloo, Process parameters optimization in gas blow forming of pin-type metal bipolar plates using Taguchi and finite element methods, International Journal of Advanced Design and Manufacturing Technology, Vol. 10, No. 2, pp. 101-107, 2017.
[23] V. Modanloo, A. Gorji, M. Bakhshi-Jooybari, Effects of forming media on hydrodynamic deep drawing, Journal of Mechanical Science and Technology, Vol. 30, pp. 2237-2242, 2016. https://doi.org/10.1007/s12206-016-0433-x
[24] V. Modanloo, H. Talebi-Ghadikolaee, B. Akhoundi, A. Mashayekhi, F. Ahmadi Khatir, A. Zeinolabedin Beygi, Investigation of process parameters of the hydrodynamic deep drawing assisted by radial pressure using Taguchi and finite element methods, Iranian Journal of Manufacturing Engineering, 2023. (in Persian) https://doi.org/10.22034/ijme.2023.390896.1762
[25] S. Hajiahmadi, M. Elyasi, M. Shakeri, Investigation of a new methodology for the prediction of drawing force in deep drawing process with respect to dimensionless analysis, International Journal of Mechanical and Materials Engineering, vol. 14, no. 1, pp. 1-13, 2019. https://doi.org/10.1186/s40712-019-0110-9
[26] S. Hajiahmadi, M. Elyasi, M. Shakeri, Development a new methodology for measuring deep drawing forces based on dimensionless evaluation, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 235, No. 19, pp. 4057-4069, 2021. https://doi.org/10.1177/0954406220969718
[27] E. Babazadeh Asbagh, V. Modanloo, V. Alimirzaloo, A. Donyavi, Experimental investigation of the effect of process parameters on the surface roughness in finishing process of chrome coated printing cylinders, International Journal of Engineering, Vol. 29, No. 12, pp. 1775-1782, 2016. https://doi.org/10.5829/idosi.ije.2016.29.12c.17