بررسی تأثیر شوک‌دهی لیزری چندباره بر خواص مکانیکی آلیاژ آلومینیوم 2014-T6

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مواد، دانشگاه صنعتی خواجه‌نصیرالدین طوسی، تهران، ایران

2 دانشجوی دکتری، گروه مهندسی مواد، دانشگاه تربیت مدرس، تهران، ایران

3 استادیار، گروه مهندسی هوافضا، دانشگاه هوایی شهید ستاری، تهران، ایران

4 کارشناسی ارشد، گروه مهندسی هوافضا، دانشگاه هوایی شهید ستاری، تهران، ایران

چکیده

عملیات شوک‌دهی لیزری، یک عملیات بهینه‌سازی سطح است که منجر به بهبود خواص مکانیکی از جمله افزایش استحکام خستگی، سختی سطح و استحکام کششی می‌گردد. این بهبود خواص را می‌­توان به ایجاد تنش پسماند و کارسرد انجام شده بر روی سطح قطعه نسبت داد. در این روش نوین که به‌عنوان جایگزینی برای روش‌های ساچمه کوبی و کوبش با امواج ماورای‌صوت به شمار می‌­رود، عوامل متعددی از جمله چگالی توان، درصد هم‌­پوشانی، نوع لایۀ محافظ و تعداد دفعات شوک‌دهی و ... تأثیرگذار است. در این پژوهش آلیاژ آلومینیوم Al2014-T6 که کاربرد وسیعی در صنایع هوایی از جمله چرخ هواپیما دارد، با هدف افزایش استحکام و عمر خستگی تحت شوک‌دهی قرارگرفته است. فرایند شوک‌دهی به ترتیب یک بار، سه بار و پنج بار بر روی این آلیاژ اعمال شد تا اثر حالت‌های مختلف شوک‌دهی بررسی شود. در ادامه مقدار تنش پسماند به کمک آزمون پراش اشعۀ ایکس و تغییرات زبری سطح توسط میکروسکوپ نیروی اتمی بررسی و سپس آزمون خستگی، کشش و ریز سختی‌سنجی بر روی قطعه انجام گرفت. نتایج آزمایش‌ها نشان می­‌دهند که با افزایش تعداد دفعات شوک‌دهی لیزری و به شرط عدم وقوع ذوب و تخریب سطحی، مقدار تنش پسماند فشاری افزایش می‌یابد که این امر منجر به افزایش 300 درصدی عمر خستگی و 25 درصدی ریزسختی سطح می‌شود؛ همچنین مشخص گردید علاوه بر بهینه‌­سازی پارامترها، افزایش دفعات شوک‌دهی نیز می‌تواند زبری سطح و استحکام کششی را دچار تغییر کند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of multiple laser shock peening on mechanical properties of aluminum alloy 2014-T6

نویسندگان [English]

  • Amin Shafinejad Bejandi 1
  • Alireza Fayazi Khanigi 2
  • Masoud Ghermezi 3
  • Mohammadreza Bayat 4
1 Department of Material Engineering, Khajeh Nasir Toosi University, Tehran, Iran
2 Department of Material Engineering, Tarbiat Modares University, Tehran, Iran
3 Department of AeroSpace Engineering, Shahid Sattari Aviation University, Tehran, Iran
4 Department of AeroSpace Engineering, Shahid Sattari Aviation University, Tehran, Iran
چکیده [English]

Laser shock peening is a surface optimization operation that leads to the improvement of mechanical properties such as increasing fatigue strength, surface hardness and tensile strength. This improvement of properties can be attributed to the creation of residual stress and cold work done on the surface. In this new method, which is considered as an alternative to the methods of peening and ultrasonic peening waves, there are many influential factors such as power density, percentage of overlap, type of protective layer and number of shocks, etc. In this research, Al2014-T6 alloy, which is widely used in aviation industries, including aircraft wheels, has been subjected to shock peening in order to increase its strength and fatigue life. Single, triple and quintuple shock processes were applied on this alloy to investigate the effect of different shock modes. Next, the amount of residual stress was analyzed with the help of X-ray diffraction analysis and changes in surface roughness by atomic force microscope, and then fatigue, tensile and microhardness tests were performed on the part. The results of the experiments show that with the increase in the number of times of laser shock and under the condition of no melting and surface destruction, the residual compressive stress increases, which leads to a 300% increase in fatigue life and a 25% increase in microhardness of the surface. It was also found that in addition to optimizing the parameters, increasing the shock frequency can also change the surface roughness and tensile strength.

کلیدواژه‌ها [English]

  • Multiple Laser Shock Peening
  • Residual Stress
  • Fatigue
  • Aluminum Alloy 2014-T6
[1] M. Abeens, R. Muruganandhan, K. Thirumavalavan, Effect of Low energy laser shock peening on plastic deformation, wettability and corrosion resistance of aluminum alloy 7075 T651, Optik, Vol. 219, pp. 165045, 2020. https://doi.org/10.1016/j.ijleo.2020.165045
[2] B. Dhakal, S. Swaroop, Mechanical properties and deformation dependent microstructural aspects of laser shock peened 7075-T6 aluminum alloy without coating, Materials Characterization, Vol. 183, pp. 111620, 2022. https://doi.org/10.1016/j.matchar.2021.111620
[3] P. K. Sharp, Q. Liu, S. A. Barter, P. Baburamani, G. Clark, Fatigue life recovery in aluminium alloy aircraft structure, Fatigue & Fracture of Engineering Materials & Structurest, Vol. 25, No. 2, pp. 99–110, 2002. https://doi.org/10.1046/j.1460-2695.2002.00481
[4] J. Wang, Y. Lu, D. Zhou, L. Sun, L. Xie, J. Wang, Mechanical properties and microstructural response of 2A14 aluminum alloy subjected to multiple laser shock peening impacts, Vacuum, Vol. 165, pp. 193-198, 2019. https://doi.org/10.1016/j.vacuum.2019.03.058
[5] J. T. Wang, L. Xie, K. Y. Luo, W. S. Tan, L. Cheng, J. F. Chen, Y. L. Lu, X. P. Li, M.Z. Ge, Improving creep properties of 7075 aluminum alloy by laser shock peening, Surface and Coatings Technology, Vol. 349, pp. 725-735, 2018. https://doi.org/10.1016/j.surfcoat.2018.06.061
[6] J. T. Wang, Y. K. Zhang, J. F. Chen, J. Y. Zhou, K. Y. Luo, W. S. Tan, L. Y. Sun, Y. L. Lu, Effect of laser shock peening on the high-temperature fatigue performance of 7075 aluminum alloy, Materials Science and Engineering:A, Vol. 704, pp. 459-468, 2017. https://doi.org/10.1016/j.msea.2017.08.050
[7] R. Bikdeloo, G. H. Farrahi, A. Mehmanparast, S. M. Mahdavi, Multiple laser shock peening effects on residual stress distribution and fatigue crack growth behaviour of 316L stainless steel, Theoretical and Applied Fracture Mechanics, Vol. 105, pp. 102429, 2020. https://doi.org/10.1016/j.tafmec.2019.102429
[8] S. Adu-Gyamfi, X. Ren, E. A. Larson, Y. Ren, Z. Tong, The effects of laser shock peening scanning patterns on residual stress distribution and fatigue life of AA2024 aluminium alloy, Optics & Laser Technology, Vol. 108, pp. 177-185, 2018. https://doi.org/10.1016/j.optlastec.2018.06.036
[9] Z. Bergant, U. Trdan, J. Grum, Effects of laser shock processing on high cycle fatigue crack growth rate and fracture toughness of aluminium alloy 6082-T651, International Journal of Fatigue, Vol. 87, pp. 444-455,2016. https://doi.org/10.1016/j.ijfatigue.2016.02.027
[10] S. Prabhakaran, S. Kalainathan, Compound technology of manufacturing and multiple laser peening on microstructure and fatigue life of dual-phase spring steel, Materials Science and Engineering: A, Vol. 674, pp. 634-645, 2016. https://doi.org/10.1016/j.msea.2016.08.031
[11] D. Karthik, J. Jiang, Y. Hu, Z. Yao, Effect of multiple laser shock peening on microstructure, crystallographic texture and pitting corrosion of Aluminum-Lithium alloy 2060-T8, Surface and Coatings Technology, Vol. 421, pp.127354, 2021. https://doi.org/10.1016/j.surfcoat.2021.127354
[12] W. Li, H. Chen, W. Huang, J. Chen, S. An, G. Xiao, S. Zhang, Optimization of multiple laser shock peening on high-cycle fatigue performance of aluminized AISI 321 stainless steel, International Journal of Fatigue, Vol. 153, pp. 106505, 2021. https://doi.org/10.1016/j.ijfatigue.2021.106505
[13] X. Nie, W. He, S. Zang, X. Wang, J. Zhao, Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts, Surface and Coatings Technology, Vol. 253, pp. 68-75, 2014. https://doi.org/10.1016/j.surfcoat.2014.05.015
[14] J. Li, J. Zhou, A. Feng, S. Huang, X. Meng, Y. Sun, Y. Huang, X. Tian, Influence of multiple laser peening on vibration fatigue properties of TC6 titanium alloy, Optics & Laser Technology, Vol. 118, pp. 183-191, 2019. https://doi.org/10.1016/j.optlastec.2019.05.007
[15] S. Huang, J. Z. Zhou, J. Sheng, K. Y. Luo, J. Z. Lu, Z. C. Xu, X. K. Meng, L. Dai, L. D. Zuo, H. Y. Ruan, H. S. Chen, Effects of laser peening with different coverage areas on fatigue crack growth properties of 6061-T6 aluminum alloy, International Journal of Fatigue, Vol. 47, pp. 292-299, 2013. https://doi.org/10.1016/j.ijfatigue.2012.09.010
[16] D. Devaux, R. Fabbro, J. Virmont, Generation of shock waves by laser-matter interaction in confined geometries, Le Journal de Physique IV, Vol. 1, pp. 179-182, 1991. https://doi.org/10.1051/jp4:1991747
[17] R. Sun, L. Li, W. Guo, P. Peng, T. Zhai, Z. Che, B. Li, C. Guo, Y. Zhu, Laser shock peening induced fatigue crack retardation in Ti-17 titanium alloy, Materials Science and Engineering: A, Vol. 737, pp. 94-104, 2018. https://doi.org/10.1016/j.msea.2018.09.016
[18] J. Zhang, X. Cheng, Q. Xia, C. Yan, Strengthening effect of laser shock peening on 7075-T6 aviation aluminum alloy, Advances in Mechanical Engineering, Vol. 12, pp. 1687814020952177, 2020. https://doi.org/10.1177/1687814020952177
[19] B. Dhakal, S. Swaroop, Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy, Journal of materials processing technology, Vol. 282, pp. 116640, 2020. https://doi.org/10.1016/j.jmatprotec.2020.116640
[20] X. Zhang, Y. Peng, M. Yang, Y. Du, Z. Wang, Effects of residual stress induced by laser shock peening on mixed-mode crack propagation behavior in 7075-T6 aluminum alloy panel, Theoretical and Applied FractureMechanics, Vol. 119, pp. 103358, 2022. https://doi.org/10.1016/j.tafmec.2022.103358
[21] X. Q. Zhang, H. Li, X. L. Yu, Y. Zhou, S. W. Duan, S. Z. Li, Z. L. Huang, L. S. Zuo, Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate, Materials & Design (1980-2015), Vol. 65, pp. 425-431, 2015. https://doi.org/10.1016/j.matdes.2014.09.001
[22] Z. Ran, Z. Yongkang, S. Guifang, S. Xuting, L. Pu, Finite element analysis of surface roughness generated by multiple laser shock peening, Rare metal materials and engineering, Vol. 47, pp. 33-38, 2018. https://doi.org/10.1016/S1875-5372(18)30067-5