تحلیل تجربی و عددی پارامترهای مؤثر بر رفتار مکانیکی فوم آلومینیومی سلول بسته در ضربه سرعت پایین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز، ایران

2 دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

در این مقاله به بررسی پارامترهایی مانند قطر حفره‌های تشکیل‌دهنده فوم، ضخامت دیواره‌ها در راستای افقی و عمودی بر روی میزان جذب انرژی فوم‌های آلومینیوم 356 سلول بسته تولیدی به روش فوم از دست رونده تحت ضربه سرعت پایین پرداخته شد. برای کاهش هزینه‌های تولید و تعداد آزمایش‌ها از روش طراحی آزمایش استفاده گردید. بر اساس طراحی انجام شده 15 آزمایش پیشنهاد گردید. سپس طبق نتایج طراحی آزمایش، شبیه‌سازی فوم‌ها با استفاده از نرم‌افزار المان محدود آباکوس انجام و بر اساس میزان جذب در حالت‌های مختلف، 4 فوم برای تولید نهایی با دو ساختار مکعبی ساده و مکعبی مرکز پر انتخاب گردید. برای انجام آزمایش ضربه سرعت پایین از دستگاه وزنه سقوطی با وزنه 50 کیلوگرم که از ارتفاع سه متر سقوط می‌کند، استفاده شد. نتایج نشان داد هر چه قطر حفره‌های فوم کوچک‌تر باشد میزان جذب انرژی بیشتر خواهد بود. همچنین ضخامت دیواره‌های فوم در راستای افقی تأثیر بیشتری نسبت به راستای عمودی بر میزان جذب انرژی فوم دارد. از بین دو نوع ساختار مورد مطالعه، ساختار مکعبی ساده عملکرد بهتری نسبت به ساختار مکعبی مرکز پر داشت. مقایسۀ نتایج شبیه‌سازی و تجربی نشان داد میزان اختلاف بین 10-30% است. بیشترین اختلاف مربوط به ساختارهای مکعبی مرکز پر بود که علت اصلی آن را می‌توان در سخت‌تر بودن ساخت این نمونه‌ها در واقعیت نسبت به حالت ایده‌آل شبیه‌سازی دانست.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental and numerical analysis of parameters affecting the mechanical behavior of closed cell aluminum foam in low-speed impact

نویسندگان [English]

  • Behzad Teimouri 1
  • Mojtaba Yazdani 2
1 Department of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran
2 Department of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran
چکیده [English]

In this paper, the parameters such as the diameter of the foam forming hollows, the thickness of the walls in the horizontal and vertical directions were investigated on the energy absorption of aluminum 356 closed cell foams produced by the lost foam casting method under low-speed impact. To reduce production costs and the number of tests, the test design method was used. Based on the design, 15 experiments were proposed. Then, according to the results of the experiment design, the simulation of the foams was done using Abaqus finite element software and based on the amount of absorption in different states, 4 foams were selected for the final production with two simple cubic structures and body center cubic. To perform the low-speed impact test, a 50 kg drop weight device that falls from a height of three meters was used. The results showed that the smaller the diameter of the foam holes, the higher the energy absorption. Also, the thickness of the foam walls in the horizontal direction has a greater effect on the energy absorption of the foam than in the vertical direction. Among the two types of structures studied, the simple cubic structure performed better than the body center cubic structure. Comparison of simulation and experimental results showed that the difference is between 10-30%. Most of this difference was related to the body center cubic structure feather, the main reason of which can be seen in the fact that it is more difficult to make these samples in reality compared to the ideal state of simulation.

کلیدواژه‌ها [English]

  • Al 356
  • Closed Cell Foam
  • Low-Speed Impact
[1] Y. Hangai, M. Saito, T. Utsunomiya, S. Kitahara, O. Kuwazuru, N. Yoshikawa, Fabrication of aluminum foam-filled thin-wall steel tube by friction welding and its compression properties, Materials, vol. 7, pp. 6796-6810, 2014. https://doi.org/10.3390/ma7096796
[2] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progress in materials science, vol. 46, pp. 559-632, 2001. https://doi.org/10.1016/S0079-6425(00)00002-5
[3] M.F. Ashby, T. Evans, N. Fleck, J.W. Hutchinson, H.N.G. Wadley, L.J. Gibson, Metal foams: a design guide, Elsevier, 2000.
[4] S. Benjamin, Process for making foamlike mass of metal, Google Patents, 1948.
[5] H.P. Degischer, B. Kriszt, Handbook of cellular metals. vol. 71, Wiley-VCH, Weinheim, 2002.
[6] A.E. Simone, L.J. Gibson, Effects of solid distribution on the stiffness and strength of metallic foams, Acta Materialia, vol. 46, pp. 2139-2150, 1998. https://doi.org/10.1016/S1359-6454(97)00421-7
[7] E. Andrews, W. Sanders, L.J. Gibson, Compressive and tensile behaviour of aluminum foams, Materials Science and Engineering: A, vol. 270, pp. 113-124, 1999. https://doi.org/10.1016/S0921-5093(99)00170-7
[8] L.J. Vendra, A. Rabiei, A study on aluminum–steel composite metal foam processed by casting, Materials Science and Engineering: A, vol. 465, pp. 59-67, 2007. https://doi.org/10.1016/j.msea.2007.04.037
[9] A. Rabiei, A.T. O’Neill, A study on processing of a composite metal foam via casting, Materials Science and Engineering: A, vol. 404, pp. 159-164, 2005. https://doi.org/10.1016/j.msea.2005.05.089
[10] W.S. Sanders, L. Gibson, Mechanics of hollow sphere foams, Materials Science and Engineering: A, vol. 347, pp. 70-85, 2003. https://doi.org/10.1016/S0921-5093(02)00583-X
[11] X. Xia, X. Chen, Z. Zhang, X. Chen, W. Zhao, B. Liao, B. Hur, Compressive properties of closed-cell aluminum foams with different contents of ceramic microspheres, Materials & Design (1980-2015), vol. 56, pp. 353-358, 2014. https://doi.org/10.1016/j.matdes.2013.11.040
[12] D. Ghosh, A. Wiest, R.D. Conner, Uniaxial quasistatic and dynamic compressive response of foams made from hollow glass microspheres, Journal of the European Ceramic Society, vol. 36, pp. 781-789, 2016. https://doi.org/10.1016/j.jeurceramsoc.2015.10.018
[13] S. Sahu, D.P. Mondal, J.U. Cho, M.D. Goel, M.Z. Ansari, Low-velocity impact characteristics of closed cell AA2014-SiCp composite foam, Composites Part B: Engineering, vol. 160, pp. 394-401, 2019. https://doi.org/10.1016/j.compositesb.2018.12.054
[14] M. Islam, M.A. Kader, P.J. Hazell, J.P. Escobedo, A.D. Brown, M. Saadatfar, Effects of impactor shape on the deformation and energy absorption of closed cell aluminium foams under low velocity impact, Materials & Design, vol. 191, pp. 108599, 2020. https://doi.org/10.1016/j.matdes.2020.108599
[15] S. Sahu, T.S. Reddy, G. Reddy, A. Gokhale, Low-velocity impact indentation rate sensitivity of aluminium foams, Materials Today Communications, vol. 24, pp. 101351, 2020. https://doi.org/10.1016/j.mtcomm.2020.101351
[16] M.A. Kader,P.J. Hazell, M.A. Islam, S. Ahmed, M.M. Hossain, J.P. Escobedo, M. Saadatfar, Strain-rate dependency and impact dynamics of closed-cell aluminium foams, Materials Science and Engineering: A, vol. 818, pp. 141379, 2021. https://doi.org/10.1016/j.msea.2021.141379
[17] S. Talebi, R. Hedayati, M. Sadighi, Dynamic crushing behavior of closed-cell aluminum foams based on different space-filling unit cells, Archives of Civil and Mechanical Engineering, vol. 21, pp. 99, 2021. https://doi.org/10.1007/s43452-021-00251-1
[18] M.J. Nayyeri, S.M.H. Mirbagheri, D.H. Fatmehsari, Compressive behavior of tailor-made metallic foams (TMFs): Numerical simulation and statistical modeling, Materials & Design, vol. 84, pp. 223-230, 2015. https://doi.org/10.1016/j.matdes.2015.06.116
[19] S. Khlifa, K. Homrani, L. Lammari, Y. Zayani, H. Kharroubi, Comparative Study Of The Effects Of Johnson Cook Parameters On The Constraints Applied To Metals During The Lamination Process By Numerical Modeling, Journal Of Non-Oxide Glasses, vol.13, no. 1, pp. 1-12, 2021.
[20] H. Jafari, M.H. Idris, A. Shayganpour, Evaluation of significant manufacturing parameters in lost foam casting of thin-wall Al–Si–Cu alloy using full factorial design of experiment, Transactions of Nonferrous Metals Society of China, vol. 23, pp. 2843-2851, 2013. https://doi.org/10.1016/S1003-6326(13)62805-8
[21] B. Xiao, Z. Fan, W. Jiang, X. Liu, W. Long, Q. Hu, Microstructure and mechanical properties of ductile cast iron in lost foam casting with vibration, Journal of Iron and Steel Research International, vol. 21, pp. 1049-1054, 2014. https://doi.org/10.1016/S1006-706X(14)60182-5
[22] M. Divandari, A.V. Golpayegani, Study of Al/Cu rich phases formed in A356 alloy by inserting Cu wire in pattern in LFC process, Materials & Design, vol. 30, pp. 3279-3285, 2009. https://doi.org/10.1016/j.matdes.2009.01.008
[23] F. Binesh, J. Zamani, M. Ghiasvand, Ordered structure composite metal foams produced by casting, International Journal of Metalcasting, vol. 12, pp. 89-96, 2018. https://doi.org/10.1007/s40962-017-0143-x
[24] E. Wu, L. Chang, Woven glass/epoxy laminates subject to projectile impact, International Journal of Impact Engineering, vol. 16, pp. 607-619, 1995. https://doi.org/10.1016/0734-743X(95)00001-Q
[25] C. Shen, Z. Wu, Z. Gao, X. Ma, Sh. Qiu, Y. Liu, T. Sun, Impact protection behavior of NiTi shape memory alloy wires, Materials Science and Engineering: A, vol. 700, pp. 132-139, 2017. https://doi.org/10.1016/j.msea.2017.05.097
[26] Y. Chen, I.M. May, Reinforced concrete members under drop-weight impacts, Proceedings of the Institution of Civil Engineers-Structures and Buildings, vol. 162, pp. 45-56, 2009. https://doi.org/10.1680/stbu.2009.162.1.45
[27] F. Aymerich, P. Marcialis, S. Meili, P. Priolo, An instrumented drop-weight machine for low-velocity impact testing, WIT Transactions on The Built Environment, vol. 22, pp. 243-253, 1996. https://doi.org/10.2495/SUSI960221
[28] J.L. Yu, X.Wang, Z.G, Wei, E.H. Wang, Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core, International Journal of Impact Engineering, vol. 28, pp. 331-347, 2003. https://doi.org/10.1016/S0734-743X(02)00053-2
[29] H. Wang, K.R. Ramakrishnan, K. Shankar, Experimental study of the medium velocity impact response of sandwich panels with different cores, Materials & Design, vol. 99, pp. 68-82, 2016. https://doi.org/10.1016/j.matdes.2016.03.048
[30] H.M. Hsiao, I.M. Daniel, Strain rate behavior of composite materials, Composites Part B: Engineering, vol. 29, pp. 521-533, 1998. https://doi.org/10.1016/S1359-8368(98)00008-0