مدل‌سازی هوشمند نیروی برش در فرآیند میکروفرزکاری استخوان توسط منطق فازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک، اراک، ایران

2 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه علم و صنعت، تهران، ایران

چکیده

میکروفرزکاری استخوان به‌­طور گسترده‌­ای در جراحی­‌های اورتوپدی، ستون فقرات، جمجمه، تعویض مفصل زانو و دندان­‌پزشکی جهت برش استخوان و ایجاد سوراخ در بافت به­‌کارگرفته می­‌شود. استفاده از ابزارهای با قطر کمتر در فرایند میکروفرزکاری استخوان در مقایسه با فرزکاری معمول باعث کاهش چشم­‌گیر نیرو و همچنین طول دوره درمانی می­‌گردد. در این مقاله، در قالب یک مطالعه تجربی، یک مدل هوشمند برای تقریب نیروی میکروفرزکاری استخوان بر اساس سیستم استنتاج فازی به دست آورده شده است. برای این منظور، ابتدا یک روش طراحی آزمایش برای استخراج یک دسته از آزمایش­‌های تجربی بکار گرفته شده ­است. سپس بر اساس نتایج آزمایش‌­های تجربی، بر اساس قابلیت تقریب سیستم­‌های فازی، یک مدل دقیق برای تقریب نیروی برش بر اساس مقادیر ورودی­‌های سرعت دورانی ابزار، نرخ پیشروی، قطر ابزار، عمق برش و جهت برش ایجاد شده­ است. با بررسی نتایج به‌دست‌آمده مشاهده می­‌شود که مدل فازی توانسته است با دقت بالایی نیروی برآیند فرایند میکروفرزکاری استخوان را بر اساس ورودی­‌های در نظر گرفته شده تقریب بزند؛ به­‌گونه‌­ای که درصد خطای مطلق و ضریب تعیین برای داده‌های بخش تست به ترتیب برابر با 22/11 درصد و 93/0 محاسبه شده است. با بهره‌گیری از داده­‌های این پژوهش جراحان با آگاهی کامل می­‌توانند بهترین مقادیر متغیرهای ورودی فرایند میکروفرزکاری را بدون نگرانی از ایجاد آسیب و ترک در بافت استخوان با حداکثر سرعت عمل ممکن تنظیم کنند.

کلیدواژه‌ها


عنوان مقاله [English]

Intelligent modeling of cutting force in bone micromilling process by fuzzy logic

نویسندگان [English]

  • Vahid Tahmasbi 1
  • Amir Hossein Rabiee 1
  • Reza Qasemi 2
  • Mahdi Qasemi 1
1 Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
2 Department of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Bone micromilling is widely used in orthopedic, spine, skull, knee joint replacement, and orthopedic surgeries to cut bone and make holes in tissue. The application of tools with a smaller diameter in the bone micromilling compared to conventional milling causes a significant reduction in force and also the length of the treatment period. In this article, in the form of an experimental study, an intelligent model for predicting bone micromilling force has been obtained based on the fuzzy inference system. For this purpose, first, an experiment design method has been used to extract a group of practical experiments. Then, based on the obtained results and approximation capability of fuzzy systems, an accurate model for predicting the cutting force has been established founded on the input values of tool rotation speed, feed rate, tool diameter, cutting depth and cutting direction. By examining the obtained results, it can be seen that the fuzzy model has been able to accurately approximate the resulting force of the bone micromilling process based on the considered inputs; The mean absolute percentage error and coefficient of determination for the data of the test section were calculated as 11.22% and 0.93%, respectively. Using the data of this research, surgeons with full knowledge can set the best values of the input variables of the micromilling process without worrying about causing damage and cracks in the bone tissue with the maximum possible operating speed.

کلیدواژه‌ها [English]

  • Micro Milling
  • Bone
  • Force Prediction
  • Fuzzy Logic
[1] M. Marco, M. Rodríguez-Millán, C. Santiuste, E. Giner, M. Henar Miguélez, A review on recent advances in numerical modelling of bone cutting, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 44, pp. 179-201, 2015. https://doi.org/10.1016/j.jmbbm.2014.12.006
[2] B. Narendra, D. Sameehan, S. Joshi, Machining of Bone and Hard Tissues, Switzerland, 2016. https://doi.org/10.1007/978-3-319-39158-8
[3] R. K. Pandey, S. S. Panda, Drilling of bone: A comprehensive review, Journal of Clinical Orthopaedics & Trauma, Vol. 4, No. 1, pp. 15-30, 2013. https://doi.org/10.1016/j.jcot.2013.01.002
[4] K. Denis, G. Van Ham, J. Vander Sloten, R. Van Audekercke, G. Van der Perre, J. De Schutter, J. P. Kruth, J. Bellemans, G. Fabry, Influence of bone milling parameters on the temperature rise, milling forces and surface flatness in view of robot-assisted total knee arthroplasty, International Congress Series, Vol. 1230, pp. 300-306, 2001. https://doi.org/10.1016/S0531-5131(01)00067-X
[5] Z. Deng, H. Zhang, B. Gui, H. Jin, Hilbert-Huang Transform based state recognition of bone milling with force sensing, IEEE International Conference on Information and Automation (ICIA), pp. 937-942, 2013. https://doi.org/10.1109/ICInfA.2013.6720428
[6] L. O’Toole, C. W. Kang, F. Z. Fang, Precision micro-milling process: state of the art. Advances in Manufacturing, Vol. 9, No. 2, pp. 173-205, 2021. https://doi.org/10.1007/s40436-020-00323-0
[7] C. Natali, P. Ingle, J. Dowell, Orthopaedic bone drills-can they be improved? Temperature changes near the drilling face, The Journal of bone and joint surgery, Vol. 78, No. 3, pp. 357-62, 1996. https://doi.org/10.1302/0301-620X.78B3.0780357
[8] Z. Liao, D. Axinte, D. Gao, On modelling of cutting force and temperature in bone milling, Journal of Materials Processing Technology, Vol. 266, pp. 627-638, 2019. https://doi.org/10.1016/j.jmatprotec.2018.11.039
[9] M. Moghaddam, A. Nahvi, M. Arbabtafti, M. Mahvash, A Physically Realistic Voxel-Based Method for Haptic Simulation of Bone Machining, in Proceeding of Springer Berlin Heidelberg, pp. 651-660, 2008. https://doi.org/10.1007/978-3-540-69057-3_82
[10] B. Kianmajd, D. Carter, M. Soshi, A novel toolpath force prediction algorithm using CAM volumetric data for optimizing robotic arthroplasty, International Journal of Computer Assisted Radiology and Surgery, Vol. 11, No. 10, pp. 1871-80, 2016. https://doi.org/10.1007/s11548-016-1355-x
[11] C. Plaskos, Modeling and Design of Robotized Tools and Milling Techniques for Total Knee Arthroplasty, Thesis, Université Joseph-Fourier - Grenoble I, 2005.
[12] K. I. A.-l. Al-Abdullah, H. Abdi, C. P. Lim, W. A. Yassin, Force and temperature modelling of bone milling using artificial neural networks, Measurement, Vol. 116, pp. 25-37, 2018. https://doi.org/10.1016/j.measurement.2017.10.051
[13] V. Tahmasbi, A. H. Rabiee, M. Safari,. Process modeling of force behavior in the automatic bovine cortical bone milling process using adaptive neuro-fuzzy inference system, Amirkabir Journal Mechanical Engineering, Vol. 53, No. 2, pp. 1287-1306, 2021. (in Persian) https://doi.org/10.22060/mej.2020.16766.6436
[14] D. Wu, L. Zhang, S. Liu, Research on establishment and validation of cutting force prediction model for bone milling, in IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1864-1869, 2015. https://doi.org/10.1109/ROBIO.2015.7419044
[15] G. Van Ham, K. Denis, J. Vander Sloten, R. Van Audekercke, G. Van der Perre, J. De Schutter, E. Aertbelien, S. Demey, J. Bellemans, Machining and accuracy studies for a tibial knee implant using a force-controlled robot, Computer Aided Surgery, Vol. 3, No. 3, pp. 123-33, 1998. https://doi.org/10.1002/(SICI)1097-0150
[16] T. Inoue, N. Sugita, M. Mitsuishi, T. Saito, Y. Nakajima, Y. Yokoyama, K. Fujiwara, N. Abe, T. Ozaki, M. Suzuki, K. Kuramoto, Y. Nakashima, K. Tanimoto, Optimal control of cutting feed rate in the robotic milling for total knee arthroplasty, in 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 215-220, 2010. https://doi.org/10.1109/BIOROB.2010.5626940
[17] M. Mitsuishi, S. Warisawa, N. Sugita, Determination of the Machining Characteristics of a Biomaterial Using a Machine Tool Designed for Total Knee Arthroplasty, CIRP Annals, Vol. 53, No. 1, pp. 107-112, 2004. https://doi.org/10.1016/S0007-8506(07)60656-8
[18] W. R. Krause, D. W. Bradbury, J. E. Kelly, E. M. Lunceford, Temperature elevations in orthopaedic cutting operations, Journal of Biomechanics, Vol. 15, No. 4, pp. 267-75, 1982. https://doi.org/10.1016/0021-9290(82)90173-7
[19] C. Yeager, A. Nazari, D. Arola, Machining of cortical bone: Surface texture, surface integrity and cutting forces, Machining Science and Technology, Vol. 12, No. 1, pp. 100-118, 2008. https://doi.org/10.1080/10910340801890961
[20] N. P. Dillon, L. B. Kratchman, M. S. Dietrich, R. F. Labadie, R. J. Webster, 3rd, T. J. Withrow, An experimental evaluation of the force requirements for robotic mastoidectomy, Otology & Neurotology, Vol. 34, No. 7, pp. 93-102, 2013. https://doi.org/10.1097/MAO.0b013e318291c76b
[21] P. A. Federspil, B. Plinkert, P. K. Plinkert, Experimental robotic milling in skull-base surgery, Computer Aided Surgery, Vol. 8, No. 1, pp. 42-8, 2003. https://doi.org/10.3109/10929080309146102
[22] M. Qasemi, M.M. Sheikhi, M. Zolfaghari, V. Tahmasbi, Experimental Investigation, Mathematical Modeling and Optimization of Cutting Forces in the Automatic Process of Cortical Bone Milling. Modares Mechanical Engineering. Vol. 20, No. 4, pp. 987-997, 2020. (in Persian)
[23] M. Ghoreishi, M. Zolfaghari, V. Tahmasbi, Sobol Sensitivity Analysis, Modeling and Optimization Effective Parameters of Force in Bone Drilling Processes, Tabriz Journal Mechanical Engineering, Vol. 48, pp. 229-237, 2018. (in Persian)
[24] M. Safari, V. Tahmasbi, A. H. Rabiee, Investigation into the automatic drilling of cortical bones using ANFIS-PSO and sensitivity analysis, Neural Computing and Applications, Vol. 33, pp. 16499-16517, 2021. https://doi.org/10.1007/s00521-021-06248-4
[25] V. Tahmasbi, A. H. Rabiee, Intelligent temperature modeling in robotic cortical bone milling process based on teaching-learning-based optimization algorithm, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 236, pp. 1118-1128, 2022. https://doi.org/10.1177/09544119221106822
[26] A. H. Rabiee, V. Tahmasbi, M. Qasemi, Experimental evaluation, modeling and sensitivity analysis of temperature and cutting force in bone micro-milling using support vector regression and EFAST methods. Engineering Applications of Artificial Intelligence, Vol. 120, pp. 105874, 2023. https://doi.org/10.1016/j.engappai.2023.105874
[27] W. Y. Lee, C. L. Shih, Control and breakthrough detection of a three-axis robotic bone drilling system, Mechatronics, Vol. 16, No. 2, pp. 73-84, 2006. https://doi.org/10.1016/j.mechatronics.2005.11.002
[28] R. K. Pandey, S. S. Panda, Optimization of bone drilling using Taguchi methodology coupled with fuzzy based desirability function approach, Journal of Intelligent Manufacturing, Vol. 26, No. 6, pp. 1121-1129, 2015. https://doi.org/10.1007/s10845-013-0844-9