بررسی اثر زاویه الیاف بر کیفیت سطح و تورق لایه‌ها در تراشکاری کامپوزیت اپوکسی تقویت‌شده با الیاف شیشه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد شهر قدس، تهران، ایران

2 عضو هیئت‌علمی، گروه صنایع، مکانیک و هوافضا، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، قزوین، ایران

3 عضو هیئت‌علمی، گروه مواد، شیمی و پلیمر، مرکز آموزش عالی فنی و مهندسی بوئین زهرا، قزوین، ایران

چکیده

کامپوزیت‌های حاوی ﺗﻘﻮﯾﺖ‌ﮐﻨﻨﺪه‌ی اﻟﯿﺎف شیشه به دلیل وزن پایین، مقاومت سایشی بالا و مقاومت عالی در برابر نور ماوراء‌بنفش در صنایع مهمی نظیر صنایع هوافضا، خودرو‌سازی و پتروشیمی مورد استفاده قرار می‌گیرند. دستیابی به قطعه‌ای در شکل دلخواه و دارای سطحی باکیفیت مناسب، چالش اصلی محققان و متخصصان ماشینکاری است. به دلیل ساختار ناهمگن و ناهمسانگرد مواد کامپوزیتی تقویت‌شده با الیاف شیشه، ماشینکاری این مواد اغلب منجر به ایجاد خرابی‌هایی مانند ترک‌خوردگی ماتریس، بیرون‌کشیدگی الیاف، ورقه‌ای شدن و غیره در سطح قطعه‌ی‌کار می‌شود. رفتارهای خرابی، از ساختار ناهمگن و ناهمسانگرد کامپوزیت ناشی نمی‌شوند، بلکه ناشی از روش‌های ماشینکاری و برهم کنش میان آن‌ها است. یکی از تأثیرگذارترین عوامل بر کیفیت سطح قطعه کامپوزیت تقویت‌شده با الیاف، جهت‌گیری الیاف است که در این تحقیق مورد مطالعه قرار گرفته ‌است. بررسی جهت‌گیری الیاف شیشه در سه راستای صفر، 45 و 90 درجه بر ساختار سطح‌ نهایی کامپوزیت اپوکسی-الیاف در این تحقیق نشان داد با افزایش زاویه‌ی الیاف از صفر تا 90 درجه، مقدار زبری سطح افزایش می‌یابد. همچنین نتایج به دست آمده نشان داد ورقه‌ای شدن سطح قطعه‌ی کار در جهت‌گیری 45 درجه بیشتر از دو جهت 90 و صفر درجه است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of fiber angle on the quality of the surface and delamination in the turning of epoxy composite reinforced with glass fiber

نویسندگان [English]

  • Vahid Moradzadeh 1
  • Mahdi Danesh 2
  • Fatemeh Arabgol 3
1 MSc Student, Department of Mechanical Engineering, Islamic Azad University Shahre Ghods Branch, Tehran, Iran
2 Faculty Member, Department of Industrial, Mechanical and Aerospace Engineering, Buein Zahra Technical University, Qazvin, Iran
3 Faculty Member, Department of Materials, Chemical and Polymer Engineering, Buein Zahra Technical University, Qazvin, Iran
چکیده [English]

Composites containing glass fiber reinforcement are used in important industries such as aerospace, automotive, and petrochemical due to their low weight, high abrasion resistance, and excellent resistance to ultraviolet light. Achieving a part in the desired shape and with a suitable quality surface is the main challenge for researchers and machining specialists. Due to the heterogeneous and anisotropic structure of composite materials reinforced with glass fibers, the machining of these materials often leads to failures such as matrix cracking, fiber pull-out, delamination, etc. on the surface of the workpiece. The failure behaviors are not caused by the heterogeneous and anisotropic structure of the composite but rather by the machining methods and the interaction between them. One of the most influential factors on the surface quality of fiber-reinforced composite parts is fiber orientation, which is studied in this research. Examining the orientation of glass fibers in 3 directions of 0 (zero), 45, and 90 degrees on the structure of the final surface of the epoxy-fiber composite in this research showed that the roughness of the surface increases with the increase of the fiber angle from zero to 90 degrees. Also, the obtained results showed that the delamination of the workpiece surface in the direction of 45 degrees is greater than in the two directions of 90 and zero degrees.

کلیدواژه‌ها [English]

  • Polymeric Composite
  • Glass Fiber
  • Roughness
  • Texture
  • Delamination
[1] Karataş MA, Gökkaya H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials. Defence Technology: 2018 Augest;14(4): 318-326. doi: 10.1016/j.dt.2018.02.001
[2] Raveen J, Richard Lin, Krishnan J, Debes B. Investigation on microstructure characteristics of tool wear and machined surface mechanisms while milling: kenaf vs glass fiber-reinforced composites. Journal of Materials Research and Technology: 2023 March-April;23: 4716-4733. doi: 10.1016/j.jmrt.2023.02.115
[3] Sakuma K, and Seto M. Tool-wear in cutting glass-fiber –reinforced plastics the relation between fiber orientation and tool wear. Bulletein of the JSME: 1983; 26(218):1420-1427. doi: 10.1299/jsme1958.26.1420
[4] Bhatnagar N, Ramakrishnan N, Naik NK, Komandurai R. On the machining of fiber reinforced plastics (FRP) composite laminates. International Journal of Machine Tool Manufacturing: 1995 May 1;35(5):701-716. doi: 10.1016/0890-6955(95)93039-9
[5] Rahman M, Ramakrishnan S, Prakesh S, Tan DG. Machinability study of carbon fiber reinforced composites. Journal of Material Process Technology: 1999 May 19;89-90:292-297. doi: 10.1016/S0924-0136(99)00040-0
[6] Davim JP, Mata F. Influence of cutting parameters on surface roughness using statistical analysis. Industrial Lubrication Tribology: 2004 October 1;56(5):270-274. doi: 10.1108/00368790410550679
[7] Ramulu M, Arola D, Colligan K. Preliminary investigation on the surface Integrity of fiber reinforced plastics. Engineering systems Design and Analysis. ASME. 1994;64(2)93-101. Scopus: Proceedings of the 2nd Biennial European Joint Conference on Engineering Systems Design and Analysis. Part 1 (of 8); London, Engl; 4 July 1994 through 7 July 1994; Code 21113
[8] Takeyama H, Lijama N. Machinability of glass fiber reinforced plastics and application of ultrasonic machining. Annal of CIRP: 1988;37(1):93-96. doi: 10.1016/S0007-8506(07)61593-5
[9] Palanikumar K. Application of taguchi and response surface methodology for surface roughness in machining glass fiber reinforced plastics by PCD tooling. International Journal of Materials Processing Technology: 2008;36(1-2):19-27. doi: 10.1007/s00170-006-0811-0
[10] Dold C, Henerichs M, Bochmann L, Wegener K. Comparison of ground and laser machined polycrystalline diamond (PCD) tools in cutting carbon fiber reinforced plastics (CFRP) for aircraft structures. Procedia CIRP: 2012;1:178-183. doi: 10.1016/j.procir.2012.04.031
[11] Palanikumar K. Modeling and analysis for surface roughness in machining glass fibre reinforced plastics using response surface methodology. Materials and Design: 2007;28(10):2611-2618. doi: 10.1016/j.matdes.2006.10.001
[12] Hussain SA, Rangadu VP, Kumar KP. Machinability of glass fiber reinforced plastic (GFRP) composite materials. International Journal of Engineering, Science and Technology. 2011 Augest;3(4):103-118. doi: 10.4314/ijest.v3i4.68546
[13] Madhavan V, Lipczynski G, Lane B, Whitenton E. Fiber orientation angle effects in machining of unidirectional CFRP laminated composite. Journal of Manufacturing Processes: 2015 October;20:431-442. doi: 10.1016/j.jmapro.2014.06.001
[14] Henerichs M, Voß R, Kuster F, Wegener K. Machining of carbon fiber reinforced plastics: influence of tool geometry and fiber orientation on the machining forces. CIRP Journal of Manufacturing Science and Technology: 2015 May;9:136-145. doi: 10.1016/j.cirpj.2014.11.002
[15] Siddharth MV, Anand KT, Sekar V, Kumar Sundaram S. An investigation of the effects of fiber orientation in GFRP machining using FEM. International Conference on Advances in Materials and Mechanical Engineering (ICAMME-2015); 2015 May 8-9; India.
[16] Voss R, Seeholzer L, Kuster F, Wegener K. Analytical force model for orthogonal machining of unidirectional carbon fibre reinforced polymers (CFRP) as a function of the fibre orientation. Journal of Material Processing Technology: 2019;263:440-469. doi: 10.1016/j.jmatprotec.2018.08.001
[17] Nguyen D, Bin Abdullah MS, Khawarizmi R, Kim D, Kwon P. 2020 The effect of fiber orientation on tool wear in edge-trimming of carbon fiber reinforced plastics (CFRP) laminates. Wear: 2020 June 15;450-451:203-213. doi: 10.1016/j.wear.2020.203213
[18] Hari Babu U, Vijaya Sai N. Optimization of drilling process parameters used in machining of glass fiber reinforced epoxy composite. Materials Today: Proceedings. 2020;23(3):594-599. doi: 10.1016/j.matpr.2019.05.415
[19] Şükrü Adin M, İşcan B, Baday Ş. Machining fiber-reinforced glass-epoxy composites with cryo-treated and untreated HSS cutting tools of varying geometries. Materials Today Communications. 2023 October 11:107301. doi: 10.1016/j.mtcomm.2023.107301
[20] Kumar AL, Prakash M. The effect of fiber orientation on mechanical properties and machinability of GFRP composites by end milling using cutting force analysis. Polymers and Polymer Composites. 2021 February 8;29:S178-S187. doi: 10.1177/0967391121991289
[21] Prasad KS, Chaitanya G. Influence of abrasive water jet machining process parameters on accuracy of hole dimensions in glass fiber reinforced polymer composites. Materials Today: Proceedings. 2023;27(2):1651-1654. doi: 10.1016/j.matpr.2020.03.554
[22] Dahiya AK, Bhuyan BK, Aharya V, Kumar S. Optimization of process parameters for machining defects of glass fibre reinforced polymer composite machined by AWJM. Materials Today: Proceedings, 2023 January 6; doi: 10.1016/j.matpr.2022.12.138
[23] Danesh M, Rahimi A. Effect of cutting tool vibration and tool wear on the surface topography of workpiece while machining Ti6Al4V Titanium alloy using laser profilometry. Iranian Journal of manufacturing Engineering. 2020 December;7(10):34-45. [In Persian]
[24] Danesh M, Khalili K. Determination of Tool Wear in Turning Process Using Undecimated Wavelet Transform and Textural Features. Procedia Technology. 2015;19:98-105. doi: 10.1016/j.protcy.2015.02.015
[25] Khalili K, Danesh M. Identification of vibration level in metal cutting using undecimated wavelet transform and gray-level co-occurrence matrix texture features. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2015;229(2):205-213. doi: 10.1177/0954405414526577
[26] DIN4760, Form Deviations; Concepts; Classification System, Deutches Institut Fuer Normung, e.V, 1982.
[27] Baraheni M, Tabatabaeian A, Amini S, Ghasemi AR. Parametric analysis of delamination in GFRP composite profiles by performing rotary ultrasonic drilling approach: Experimental and statistical study. Composites Part B: Engineering. 2019 September 1;172:612-620. doi: 10.1016/l.compositesb.2019.05.057