ساخت کامپوزیت پلی‌اتیلن گلایکول با داربست سیلیکون کاربیدی برای استفاده در مهندسی بافت استخوان

نوع مقاله : مقاله پژوهشی

نویسندگان

عضو هیئت‌علمی، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران

چکیده

هدف از انجام این پژوهش ساخت و مشخصه‌یابی داربست نانوسیلیکون کاربید ‌(SiC) با پوشش پلی‌اتیلن گلایکول ‌(PEG) برای استفاده در مهندسی بافت استخوان هست. مشخصه‌یابی نانو SiC و داربست‌ها با استفاده از الگوی پراش پرتو ایکس ‌(XRD)، تصاویر میکروسکوپ الکترونی روبشی (SEM)، آنالیز عنصری به روش تفکیک انرژی پرتو ایکس ‌(EDS)، آزمون توزیع اندازه ذرات ‌(DLS)، میکروسکوپ الکترونی عبوری ‌(TEM)، آزمون‌های طیف‌سنجی مادون قرمز انجام‌ شد. به ‌منظور بررسی خواص فیزیکی و مکانیکی داربست‌ها، مقادیر درصد تخلخل و استحکام فشاری داربست‌ها اندازه‌گیری شد. نتایج نشان داد که ساخت و مشخصه‌یابی داربست نانو ‌SiC پلی‌اتیلن گلایکول با استفاده از روش اسنفج پلیمری با موفقیت انجام‌ شد. تخلخل داربست‌ها در حدود‌ 80-65 درصد به دست آمد. استحکام فشاری داربست‌ها در حدود 2/32 –0/72 مگاپاسگال بدست آمد. درنهایت، داربست 30 درصد وزنی سیلیکون کاربید با پوشش پلی‌اتیلن گلایکول و زمان 30 ثانیه پوشش‌دهی به‌ عنوان داربست بهینه معرفی شد که می‌تواند برای کاربردهای مهندسی بافت استخوان ‌(استخوان اسفنجی) استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication of polyethylene glycol composite with silicon carbide scaffold for use in bone tissue engineering

نویسندگان [English]

  • Ayoub Khosravi Farsani
  • Behroz Asadi Borujeni
Faculty Member, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
چکیده [English]

The aim of carrying out this research was to fabricate and characterize a nano–SiC scaffold with PEG in order to utilize in bone tissue engineering. For this purpose, nano–SiC powder was synthesized via ball milling method. Fabrication of scaffolds and their coating were carried out using polymeric sponge replication and dip – coating methods. Nano–SiC and scaffolds were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), particle size distribution test (DLS), transmission electron microscopy (TEM), and Brunauer Emmet Teller (BET). In order to examine the physical and mechanical properties of the scaffolds, porosity percentage and compressive strength values were measured. Results showsd that nano–SiC powder were synthesized and characterized via ball milling method with success. Fabrication and characterization of nano–SiC–PEG scaffolds was conducted via polymeric sponge replication and dip coating methods with success. The porosity of the scaffolds was found to be around 65-80%. The compressive strength of the scaffolds was found to be around 0.72-2.32 MPa. Finally, the 30% by weight silicon carbide scaffold with polyethylene glycol coating and 30 seconds coating time was introduced as the optimal scaffold that can be used for bone tissue engineering applications (spongy bone).

کلیدواژه‌ها [English]

  • Nano SiC
  • Polyethylene Glycol
  • Nanocomposite
  • Scaffold
  • Bone Tissue Engineering
[1] Karamian E, Saghirzadeh Darki S. Novel bcp-bioactive glass-akermanite/pcl composite scaffold: physical and mechanical behavior, and in vitro bioactivity. Journal of Advanced Materials and Processing. 2020 Sep 1;8(3):11-24. doi: 20.1001.1.2322388.2020.8.3.2.5
[2] Neumann M, Epple M. Composites of calcium phosphate and polymers as bone substitution materials. European Journal of Trauma. 2006 Apr; 32:125-31. doi: 10.1007/s00068-006-6044-y
[3] Jones JR, Hench LL. Effect of surfactant concentration and composition on the structure and properties of sol-gel-derived bioactive glass foam scaffolds for tissue engineering. Journal of Materials Science. 2003 Sep; 38:3783-90. doi: 10.1023/A:1025988301542
[4] Sopyan I, Mel M, Ramesh S, Khalid KA. Porous hydroxyapatite for artificial bone applications. Science and Technology of Advanced Materials. 2007 Jan 31;8(1-2):116. doi: 10.1016/j.stam.2006.11.017
[5] Wu C. Methods of improving mechanical and biomedical properties of Ca–Si-based ceramics and scaffolds. Expert review of medical devices. 2009 May 1;6(3):237-41. doi: 10.1586/erd.09.3
[6] Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced drug delivery reviews. 1997 Oct 13;28(1):5-24. doi: 10.1016/S0169-409X(97)00048-3
[7] Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release. 2012 Feb 28;158(1):15-33. doi: 10.1016/j.jconrel.2011.09.064
[8] Abdala AA, Milius DL, Adamson DH, Aksay IA, Prud’homme RK. Inspired by abalone shell: Strengthening of porous ceramics with polymers. Polym. Mater. Sci. Eng. 2004 Apr; 90:384-5.
[9] Joughehdoust S, Behnamghader A, Imani M, Daliri M, Doulabi AH, Jabbari E. A novel foam-like silane modified alumina scaffold coated with nano-hydroxyapatite–poly (ε-caprolactone fumarate) composite layer. Ceramics International. 2013 Jan 1;39(1):209-18. doi: 10.1016/j.ceramint.2012.06.011
[10] Palmero P. Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods. Nanomaterials. 2015 Apr 28;5(2):656-96. doi: 10.3390/nano5020656
[11] Migliaresi C, Motta A, editors. Scaffolds for tissue engineering: Biological design, materials, and fabrication. CRC Press; 2014 Jun 10.
[12] Sabir MI, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of materials science. 2009 Nov; 44:5713-24. doi: 10.1007/s10853-009-3770-7
[13] Rana D, Arulkumar S, Vishwakarma A, Ramalingam M. Considerations on designing scaffold for tissue engineering. InStem cell biology and tissue engineering in dental sciences. 2015 Jan 1 (pp. 133-148). Academic Press. doi: 10.1016/B978-0-12-397157-9.00012-6
[14] López‐Álvarez M, Pereiro I, Serra J, Gonzalez P, de Carlos A. Porous silicon carbide scaffolds with patterned surfaces obtained from the Sea Rush Juncus maritimus for tissue engineering applications. International Journal of Applied Ceramic Technology. 2012 May;9(3):486-96. doi: 10.1111/j.1744-7402.2011.02659.x
[15] Gómez-Gómez A, Moyano JJ, Román-Manso B, Belmonte M, Miranzo P, Osendi MI. Highly-porous hierarchical SiC structures obtained by filament printing and partial sintering. Journal of the European Ceramic Society. 2019 Apr 1;39(4):688-95. doi: 10.1016/j.jeurceramsoc.2018.12.034
[16] Lelli M, Foltran I, Foresti E, Martinez‐Fernandez J, Torres‐Raya C, Varela‐Feria FM, Roveri N. Biomorphic silicon carbide coated with an electrodeposition of nanostructured hydroxyapatite/collagen as biomimetic bone filler and scaffold. Advanced Engineering Materials. 2010 Aug;12(8):B348-55. doi: 10.1002/adem.200980086
[17] Hutanu D, Frishberg MD, Guo L, Darie CC. Recent applications of polyethylene glycols (PEGs) and PEG derivatives. Mod. Chem. Appl. 2014 Aug;2(2):1-6. doi: 10.4172/2329-6798.1000132
[18] Escudero-Castellanos A, Ocampo-García BE, Domínguez-García MV, Flores-Estrada J, Flores-Merino MV. Hydrogels based on poly (ethylene glycol) as scaffolds for tissue engineering application: biocompatibility assessment and effect of the sterilization process. Journal of Materials Science. Materials in Medicine. 2016 Dec; 27:1-0. doi: 10.1007/s10856-016-5793-3
[19] Li JJ, Roohani-Esfahani SI, Dunstan CR, Quach T, Steck R, Saifzadeh S, Pivonka P, Zreiqat H. Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiae. Biomedical Materials. 2016 Feb 19;11(1):015016. doi: 10.1088/1748-6041/11/1/015016
[20] Luyt AS, Dramićanin MD, Antić Ž, Djoković V. Morphology, mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler. Polymer testing. 2009 May 1;28(3):348-56. doi: 10.1016/j.polymertesting.2009.01.010
[21] Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nature materials. 2003 Mar 1;2(3):164-8. doi: 10.1038/nmat832