مطالعه تأثیرات درجه حرارت پیش‌گرم بر فرایند تراشکاری فولاد CK45

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت‌علمی، گروه مهندسی مکانیک، دانشگاه صنعتی بیرجند، بیرجند، ایران

2 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه تهران، تهران، ایران

3 دانشجوی کارشناسی، گروه مهندسی مکانیک، دانشگاه صنعتی بیرجند، بیرجند، ایران

چکیده

در بسیاری از صنایع که با فرآیندهای ماشینکاری در ارتباط هستند، فاکتور اساسی برای کاهش هزینه‌ی کلی تولید، انتخاب شرایط ایده‌آل ماشینکاری است. حرارت قطعه یک عامل بسیار مؤثر در فرآیندهای ماشینکاری می‌باشد که در این مطالعه، تأثیر این پارامتر بر رفتار براده و نیروهای وارده بر ابزار در ماشینکاری فولاد CK45 مورد بررسی قرار گرفته ‌است. از سه ‌دمای پیش‌گرم 25، 70 و 100 درجه سانتی‌گراد برای پیش‌گرم قطعه پیش از عملیات تراشکاری استفاده ‌شد و متغیرهای تشکیل براده بررسی گردید. همچنین با ایجاد مدل اجزای‌‌ محدود از فرایند، ماشینکاری قطعه و تشکیل براده در ماده شبیه‌سازی شد که نتایج تطابق خوبی با آزمایشات تجربی را نشان می‌دهد. با تایید مدل اجزاء محدود، مقدار نیروی ماشین‌کاری، تنش‌های حرارتی و سایش در فرایند به کمک مدل اجزای محدود ارزیابی شد. بر اساس نتایج بدست‌آمده مشخص‌شد که بیشترین انحناء ‌براده در دمای پیش‌گرم 70 درجه سانتی‌گراد رخ می‌دهد. همچنین بیشترین ضخامت تغییر شکل یافته براده در دمای پیش‌گرم ‌25‌ درجه و کمترین مقدار آن در دمای پیش‌گرم ‌70‌ درجه سانتی‌گراد بوده‌است. نیروهای وارد بر ابزار در راستاهای y و x با کاهش دما بیشتر شده اما نرخ حرارت نوک ابزار تا دمای ماشینکاری ‌70 درجه سانتی‌گراد افزایش و بعد از آن به علت کمتر شدن اصطکاک به طرز چشم‌گیری و تا حدود 60% کاهش یافته‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Studying the effects of preheat temperature on the turning process of CK45 steel

نویسندگان [English]

  • Seyyed Ehsan Eftekhari Shahri 1
  • Sayyed Mohammadreza Sedehi 2
  • Hadi Izadi 3
1 Faculty Member, Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran
2 PhD Student, Department of Mechanical Engineering, Tehran University, Tehran, Iran
3 BSc Student, Department of Mechanical Engineering, Birjand University of Technology, Birjand, Iran
چکیده [English]

In many industries that are related to machining processes, the basic factor to reduce the overall cost of production is the selection of ideal machining conditions. The piece temperature is a very effective factor in machining processes, and in this study, the effect of this parameter on the behavior of the chip and the forces on the tool in the machining of CK45 steel has been investigated. Three preheating temperatures of 25, 70, and 100°C were used to preheat the part before turning, and the variables of chip formation were investigated. Also, by developing a finite element model (FEM) of the process, the machining of the part and the formation of chips in the material were simulated, which shows a good agreement with the experimental tests. After FEM validation, the amount of machining force, thermal stresses and wear in the process was evaluated with the help of FEM. Based on the obtained results, it was found that the maximum curvature of the chip occurs at the preheat temperature of 70 degrees Celsius. Also, the maximum deformed thickness of the chip was at a preheat temperature of 25 degrees and the lowest value was at a preheat temperature of 70 degrees Celsius. The forces applied on the tool in the Y and X directions increased with the decrease in temperature, but the heating rate of the tool tip increased up to the machining temperature of 70 degrees Celsius, and after that, due to the reduction of friction, it has been significantly reduced to about 60%.

کلیدواژه‌ها [English]

  • Turning
  • Simulation
  • Preheat
  • CK45 steel
  • Chip
[1] Sadeghifar M, Sedaghati R, Jomaa W, Songmene V. A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions. The International Journal of Advanced Manufacturing Technology: 2018 Jun; 96:3747-91. doi: 10.1007/s00170-018-1759-6
[2] Javidi A, Rieger U, Eichlseder W. The effect of machining on the surface integrity and fatigue life. International Journal of fatigue: 2008 Oct 1;30(10-11):2050-5. doi: 10.1016/j.ijfatigue.2008.01.005
[3] Touazine H, Chadha K, Jahazi M, Bocher P. Characterization of subsurface microstructural alterations induced by hard turning of Inconel 718. Journal of Materials Engineering and Performance: 2019 Nov; 28:7016-24. doi: 10.1007/s11665-019-04416-1
[4] Soler D, Aristimuño PX, Garay A, Arrazola PJ, Klocke F, Veselovac D, Seimann M. Finding correlations between tool life and fundamental dry cutting tests in finishing turning of steel. Procedia engineering: 2015 Jan 1; 132:615-23. doi: 10.1016/j.proeng.2015.12.539
[5] Karaguzel U, Bakkal M, Budak E. Mechanical and thermal modeling of orthogonal turn-milling operation. Procedia CIRP: 2017 Jan 1; 58:287-92. doi: 10.1016/j.procir.2017.03.191
[6] Saez-de-Buruaga M, Soler D, Aristimuño PX, Esnaola JA, Arrazola PJ. Determining tool/chip temperatures from thermography measurements in metal cutting. Applied Thermal Engineering; 2018 Dec 25; 145:305-14. doi: 10.1016/j.applthermaleng.2018.09.051
[7] Ning J, Liang SY. Predictive modeling of machining temperatures with force–temperature correlation using cutting mechanics and constitutive relation. Materials: 2019 Jan 16;12(2):284. doi: 10.3390/ma12020284
[8] Baohai W, Di C, Xiaodong H, Dinghua Z, Kai T. Cutting tool temperature prediction method using analytical model for end milling. Chinese Journal of Aeronautics: 2016 Dec 1;29(6):1788-94. doi: 10.1016/j.cja.2016.03.011
[9] Mirkoohi E, Bocchini P, Liang SY. Analytical temperature predictive modeling and non-linear optimization in machining. The International Journal of Advanced Manufacturing Technology: 2019 Jun 19; 102:1557-66. doi: 10.1007/s00170-019-03296-y
[10] Richardson DJ, Keavey MA, Dailami F. Modelling of cutting induced workpiece temperatures for dry milling. International Journal of Machine Tools and Manufacture: 2006 Aug 1; 46(10):1139-45. doi: 10.1016/j.ijmachtools.2005.08.008
[11] Karaguzel U, Budak E. Investigating effects of milling conditions on cutting temperatures through analytical and experimental methods. Journal of Materials Processing Technology: 2018 Dec 1; 262:532-40. doi: 10.1016/j.jmatprotec.2018.07.024
[12] Karaguzel U, Bakkal M, Budak E. Modeling and measurement of cutting temperatures in milling. Procedia CIRP: 2016 Jan 1; 46:173-6. doi: 10.1016/j.procir.2016.03.182
[13] Li L, Li B, Ehmann KF, Li X. A thermo-mechanical model of dry orthogonal cutting and its experimental validation through embedded micro-scale thin film thermocouple arrays in PCBN tooling. International Journal of Machine Tools and Manufacture: 2013 Jul 1; 70:70-87. doi: 10.1016/j.ijmachtools.2013.03.005
[14] Sutter G, Ranc N. Temperature fields in a chip during high-speed orthogonal cutting—an experimental investigation. International Journal of Machine Tools and Manufacture: 2007 Aug 1; 47(10):1507-17. doi: 10.1016/j.ijmachtools.2006.11.012
[15] Kryzhanivskyy V, Bushlya V, Gutnichenko O, Petrusha IA, Ståhl JE. Modelling and experimental investigation of cutting temperature when rough turning hardened tool steel with PCBN tools. Procedia Cirp: 2015 Jan 1;31:489-95. doi: 10.1016/j.procir.2015.03.079
[16] Huang K, Yang W. Analytical model of temperature field in workpiece machined surface layer in orthogonal cutting. Journal of Materials Processing Technology: 2016 Mar 1; 229:375-89. doi: 10.1016/j.jmatprotec.2015.07.008
[17] Ding H, Shin YC. Dislocation density-based grain refinement modeling of orthogonal cutting of titanium. Journal of Manufacturing Science and Engineering: 2014 Aug 1;136(4):041003. doi: 10.1115/1.4027207
[18] Liu R, Salahshoor M, Melkote SN, Marusich T. A unified material model including dislocation drag and its application to simulation of orthogonal cutting of OFHC Copper. Journal of Materials Processing Technology: 2015 Feb 1; 216:328-38. doi: 10.1016/j.jmatprotec.2014.09.021
[19] Jafarian F, Umbrello D, Jabbaripour B. Identification of new material model for machining simulation of Inconel 718 alloy and the effect of tool edge geometry on microstructure changes. Simulation Modelling Practice and Theory: 2016 Aug 1; 66:273-84. doi: 10.1016/j.simpat.2016.05.001
[20] Caruso S, Imbrogno S, Rinaldi S, Umbrello D. Finite element modeling of microstructural changes in Waspaloy dry machining. The International Journal of Advanced Manufacturing Technology: 2017 Mar; 89:227-40. doi: 10.1007/s00170-016-9037-y
[21] Jafarian F, Masoudi S, Umbrello D, Filice L. New strategies for improvement of numerical model accuracy in machining of nickel-based alloy. Simulation Modelling Practice and Theory: 2019 Jul 1; 94:134-48. doi: 10.1016/j.simpat.2019.02.006
[22] akramian Zadeh S, Rashidi P. The effect of fluid velocity and microstructure on erosion corrosion of two-phase CK45 steel. Results in Materials: 2020 Jun 1; 6:100077. doi: 10.1016/j.rinma.2020.100077
[23] Holub M, Andrs O, Kovar J, Vetiska J. Effect of position of temperature sensors on the resulting volumetric accuracy of the machine tool. Measurement: 2020 Jan 1; 150:107074. doi: 10.1016/j.measurement.2019.107074
[24] Asif M, Ahad MA, Iqbal MF, Reyaz S. Experimental investigation of thermal properties of tool steel and mild steel with heat treatment. Materials Today: Proceedings: 2021 Jan 1; 45:5511-7. doi: 10.1016/j.matpr.2021.02.272
[25] Razfar M, Principles of machining and instrumentation, Amirkabir University of Technology Press: 2022. [In Persian]
[26] Knight WA, Boothroyd G. Fundamentals of metal machining and machine tools. CRC Press; 2019 Aug 8.
[27] Kara F, Aslantaş K, Cicek A. Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network. Applied Soft Computing: 2016 Jan 1; 38:64-74. doi: 10.1016/j.asoc.2015.09.034