بررسی آزمایشگاهی اثر دما و نرخ کرنش بر رفتار مکانیکی و تورق گلار 1/2 تحت بار خمشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مکانیک، دانشگاه بوعلی سینا، همدان، ایران

2 استاد، گروه مهندسی مکانیک، دانشگاه بوعلی سینا، همدان،ایران

3 استادیار، گروه مهندسی مکانیک، دانشگاه آیت الله بروجردی (ره)، بروجرد، ایران

10.22034/ijme.2023.412900.1821

چکیده

ورقه­‌های فلزی الیافی در دهه گذشته به دلیل خواص مکانیکی مطلوب مورد توجه صنایع هوایی و خودروسازی قرارگرفته‌اند. این لمینت­‌ها از لایه‌­های فلزی نازک و یک­‌لایه اپوکسی تقویت­‌شده با الیاف تشکیل­ شده‌­اند. گلار 1/2 از یک‌­لایه اپوکسی تقویت‌­شده با الیاف شیشه تشکیل­‌شده که بین دولایه آلومینیوم 2024 قرارگرفته ­است. این مطالعه به بررسی تأثیر دما و نرخ کرنش برروی رفتار مکانیکی گلار 1/2 تحت بارگذاری خمشی تمرکز دارد. نمونه­‌ها با نرخ بارگذاری 03/0 و 3/0 بر ثانیه و در دماهای 25، 60 و 100 درجه سلسیوس تحت آزمایش خمش قرار گرفتند. منحنی‌های نیرو-جابجایی برای خمش سه‌­نقطه‌ای در دماها و نرخ‌های کرنش مختلف استخراج شدند. تغییرشکل لایه­‌ها با استفاده از فن­‌آوری پردازش تصویر رصد شدند. نتایج نشان ­داد که با افزایش دما از 25 به 100 درجه سلسیوس، حداکثر نیروی خمشی کاهش قابل‌­توجهی دارد. این کاهش برای نرخ بارگذاری 03/0 بر ثانیه 51% و برای نرخ بارگذاری 3/0 بر ثانیه، 30% بود. با این‌­حال، افزایش در نرخ بارگذاری گلار 1/2 منجر به افزایش بیشتر حداکثر نیروی خمشی شد. برای تمامی دماها، افزایش نرخ بارگذاری نیز باعث افزایش ضریب الاستیک خمشی شد. همچنین، نتایج نشان ­داد که با استفاده از تغییر شکل‌های به‌دست ‌آمده در دماها و نرخ‌های بارگذاری مختلف، می‌توان تغییر شکل گلار 1/2 را در فرآیندهای شکل‌دهی کنترل نمود.

کلیدواژه‌ها


عنوان مقاله [English]

An experimental study on the influence of temperature and strain rate on the mechanical properties and delamination of GLARE 2/1 under bending load

نویسندگان [English]

  • Ali Shirafkan 1
  • Gholamhossein Majzoobi 2
  • Mohammad Kashfi 3
1 PhD Student, Mechanical Engineering Department, Bu-Ali Sina University, Hamedan, Iran
2 Professor, Mechanical Engineering Department, Bu-Ali Sina University, Hamedan, Iran
3 Assistant Professor, Mechanical Engineering Department, Ayatollah Boroujerdi University, Boroujerd, Iran
چکیده [English]

Fiber metal laminates have garnered attention from the aviation and automotive industries due to their favorable mechanical properties. These laminates consist of thin metal layers and a fiber-reinforced epoxy layer. This study focuses on investigating and analyzing the impact of temperature and strain rate on GLARE 2/1 under bending conditions. GLARE 2/1 are composed of one layer of epoxy reinforced with glass fibers sandwiched between two layers of aluminum 2024. The samples were subjected to bending with loading rates of 0.03 and 0.3 1/s at temperatures of 25, 60, and 100 degrees Celsius.The force-displacement curves were extracted for three-point bending at different temperatures and strain rates. The deformation of the layers was observed using digital image correlation technology. The results indicate that, in GLARE 2/1 and at a constant loading speed, with increasing temperature, the maximum bending force decreases, this value decreased by 51% at a loading rate of 0.031/s and at 100 degrees Celsius compared to 25 degrees Celsius and this value decreased 30% at a loading rate of 0.3 1/s. Increasing the loading speed in GLARE 2/1 samples leads to a greater increase in the maximum bending force. The bending elastic coefficient at a loading rate of 0.3 1/s is higher than at a loading rate of 0.03 1/s at all temperatures. By utilizing the deformations obtained under different temperature and loading conditions, it is possible to control the deformation of GLARE 2/1 in forming processes.

کلیدواژه‌ها [English]

  • Delamination
  • 3-Point Bending
  • Temperature
  • Strain Rate
  • Mechanical Properties
[1] Salve A, Kulkarni R, Mache A. A review: fiber metal laminates (FML’s)-manufacturing, test methods and      numerical modeling. International Journal of Engineering Technology and Sciences. 2016 Dec 30;3(2):71-84. doi: 10.15282/ijets.6.2016.10.2.1060
[2] Sarasini F, Tirillò J, Ferrante L, Sergi C, Sbardella F, Russo P, Simeoli G, Mellier D, Calzolari A. Effect of temperature and fiber type on impact behavior of thermoplastic fiber metal laminates. Composite Structures. 2019 Sep 1;223:110961. doi: 10.1016/j.compstruct.2019.110961
[3] He W, Wang L, Liu H, Wang C, Yao L, Li Q, Sun G. On impact behavior of fiber metal laminate (FML) structures: A state-of-the-art review. Thin-Walled Structures. 2021 Oct 1;167:108026. doi: 10.1016/j.tws.2021.108026
[4] Mosse L, Compston P, Cantwell WJ, Cardew-Hall M, Kalyanasundaram S. Stamp forming of polypropylene based fibre–metal laminates: the effect of process variables on formability. Journal of Materials Processing Technology. 2006 Feb 28;172(2):163-8. doi: 10.1016/j.jmatprotec.2005.09.002
[5] Jin K, Xuan S, Tao J, Chen Y. The synergistic effect of temperature and loading rate on deformation for thermoplastic fiber metal laminates. Materials. 2021 Jul 28;14(15):4210. doi: 10.3390/ma14154210
[6] Ji C, Hu J, Wang B, Zou Y, Yang Y, Sun Y. Mechanical behavior prediction of CF/PEEK-titanium hybrid laminates considering temperature effect by artificial neural network. Composite Structures. 2021 Apr 15;262:113367. doi: 10.1016/j.compstruct.2020.113367
[7] Rajkumar GR, Krishna M, Narasimhamurthy HN, Keshavamurthy YC, Nataraj JR. Investigation of tensile and bending behavior of aluminum based hybrid fiber metal laminates. Procedia Materials Science. 2014 Jan 1;5:60-8. doi: 10.1016/j.mspro.2014.07.242
[8] Kubit A, Trzepiecinski T, Kłonica M, Hebda M, Pytel M. The influence of temperature gradient thermal shock cycles on the interlaminar shear strength of fibre metal laminate composite determined by the short beam test. Composites Part B: Engineering. 2019 Nov 1;176:107217. doi: 10.1016/j.compositesb.2019.107217
[9] Hinz S, Heidemann J, Schulte K. Damage evaluation of GLARE® 4B under interlaminar shear loading at different temperature conditions. Advanced Composites Letters. 2005 Mar;14(2): 096369350501400201. doi: 10.1177/096369350501400201
[10] Carrillo JG, Cantwell WJ. Mechanical properties of a novel fiber–metal laminate based on a polypropylene     composite. Mechanics of materials. 2009 Jul 1;41(7):828-38. doi: 10.1016/j.mechmat.2009.03.002
[11] Ostapiuk M, Bieniaś J, Surowska B. Analysis of the bending and failure of fiber metal laminates based on glass and carbon fibers. Science and Engineering of Composite Materials. 2018 Nov 27;25(6):1095-106. doi: 10.1515/secm-2017-0180
[12] Wisnom MR, Atkinson JW. Reduction in tensile and flexural strength of unidirectional glass fibre-epoxy with increasing specimen size. Composite Structures. 1997 May 1;38(1-4):405-11. doi: 10.1016/S0263-8223(97)00075-5
[13] Jackson KE, Kellas S, Morton J. Scale effects in the response and failure of fiber reinforced composite laminates loaded in tension and in flexure. Journal of composite materials. 1992 Dec;26(18):2674-705. doi: 10.1177/002199839202601803
[14] Hynes NR, Vignesh NJ, Jappes JW, Velu PS, Barile C, Ali MA, Farooq MU, Pruncu CI. Effect of stacking sequence of fibre metal laminates with carbon fibre reinforced composites on mechanical attributes: Numerical simulations and experimental validation. Composites Science and Technology. 2022 Apr 12;221:109303. doi: 10.1016/j.compscitech.2022.109303
[15] Lin Y, Li H, Kuang N, Chen S, Tao J. Experimental and numerical research on flexural behavior of fiber metal laminate sandwich composite structures with 3D woven hollow integrated core. Journal of Sandwich Structures & Materials. 2022 May;24(4):1790-807. doi: 10.1177/1099636222108463
[16] Chen Y, Wang Z, Lin Y, Wang H, Hua L. Theoretical Modeling and Experimental Verification of the Bending Deformation of Fiber Metal Laminates. Materials. 2023 Apr 30;16(9):3486. doi: 10.3390/ma16093486
[17] Rans CD, Alderliesten RC, Benedictus RJ. Predicting the influence of temperature on fatigue crack propagation in Fibre Metal Laminates. Engineering Fracture Mechanics. 2011 Jul 1;78(10):2193-201. doi: 10.1016/j.engfracmech.2011.04.005
[18] Kashfi M, Majzoobi GH, Bonora N, Iannitti G, Ruggiero A, Khademi E. A study on fiber metal laminates by using a new damage model for composite layer. International Journal of Mechanical Sciences. 2017 Oct 1;131:75-80. doi: 10.1016/j.ijmecsci.2017.06.045
[19] Wollmann T, Hahn M, Wiedemann S, Zeiser A, Jaschinski J, Modler N, Khalifa NB, Meißen F, Paul C. Thermoplastic fibre metal laminates: Stiffness properties and forming behaviour by means of deep drawing. Archives of Civil and Mechanical Engineering. 2018 Feb 1;18(2):442-50. doi: 10.1016/j.acme.2017.09.001
[20] Lobo H, Lorenzo J. High speed stress-strain material properties as inputs for the simulation of impact situations. IBEC, Stuttgart, Germany. 1997.
[21] González EV, Maimí P, Camanho PP, Lopes CS, Blanco N. Effects of ply clustering in laminated composite plates under low-velocity impact loading. Composites Science and Technology. 2011 Apr 12;71(6):805-17. doi: 10.1016/j.compscitech.2010.12.018
[22] Mortell DJ, Tanner DA, McCarthy CT. An experimental investigation into multi-scale damage progression in laminated composites in bending. Composite structures. 2016 Aug 1;149:33-40. doi: 10.1016/j.compstruct.2016.03.054
[23] Pol, M. H., Liaghat, G. Investigating the bending properties of polymeric orthopedic plaque made of different polymers by additive manufacturing method. Iranian Journal of Manufacturing Engineering, 2022; 9(9): 21-25. doi: 10.22034/ijme.2023.376919.1726 [In Persian]