بهینه‌سازی خواص مکانیکی نانوکامپوزیت PVC/NBR/Graphene برای دستیابی به بیشینه استحکام کششی و ازدیاد طول در هنگام شکست

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه شهید بهشتی، تهران، ایران

2 استادیار، گروه مهندسی مکانیک، دانشگاه شهید بهشتی، تهران، ایران

10.22034/ijme.2023.412811.1822

چکیده

در این پژوهش با استفاده از روش اختلاط مذاب، نانوکامپوزیت پلی وینیل کلراید (PVC) / نیتریل بوتادین رابر  (NBR)/ گرافن ساخته شد. برای بررسی تاثیر درصد وزنی الاستومر NBR و درصد وزنی نانوصفحات گرافن بر خواص مکانیکی (استحکام کششی و درصد ازدیاد طول در هنگام شکست) نانوکامپوزیت PVC/NBR/Graphene ، از روش رویه پاسخ (RSM) استفاده شد. با استفاده از جدول آنالیز واریانس برای خواص مکانیکی نانوکامپوزیت روابط ریاضی ارائه گردید و میزان تاثیر هر یک پارامترهای موادی بر خواص مکانیکی مورد بررسی قرار گرفت. مقایسه نتایج روابط ریاضی و نتایج تجربی خطای کمی را نشان داد. همچنین برای تایید نتایج خواص مکانیکی، ریز ساختار نمونه‌ها با استفاده از میکروسکوپ الکترونی (SEM) بررسی شد.  نتایج نشان داد با افزایش درصد وزنی نانوصفحات گرافن از 0 تا 2 درصد وزنی و کاهش NBR از 40 به 20 درصد وزنی در نانوکامپوزیت، استحکام کششی افزایش می‌یابد، درحالی که درصد ازدیاد طول در شکست کاهش پیدا می‌کند. با بهینه‌سازی خواص مکانیکی جهت داشتن همزمان بیشنه استحکام کششی (4/15مگاپاسکال) و بیشینه درصد ازدیاد طول در هنگام شکست (107/6درصد)، درصد وزنی نانوصفحات گرافن و NBR به ترتیب 0/81 و 35/18 درصد خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Optimizing the mechanical properties of PVC/NBR/Graphene nanocomposite for achieve maximum tensile strength and elongation at break

نویسندگان [English]

  • Mohammad Purhaji 1
  • Amir Hosein Hamdollahzade 1
  • Mohammad Reza Nakhaei 2
1 MSc Student, Department of Mechanical Engineering, Shahid Beheshti University, Tehran, Iran
2 Assistant Professor, Department of Mechanical Engineering, Shahid Beheshti University, Tehran, Iran
چکیده [English]

In this study, a nanocomposite based on polyvinyl chloride (PVC)/nitrile butadiene rubber (NBR)/Graphene nanoplates was prepared by melt mixing method. The response surface methodology (RSM) was employed to investigate the effect of weight percentages of NBR elastomer and graphene nanosheets on the mechanical properties (tensile strength and elongation at break) of the PVC/NBR/graphene nanocomposite. Mathematical relationships for the mechanical properties of the nanocomposite were presented using analysis of variance (ANOVA) table, and the degree of influence of each material parameter on the mechanical properties was studied. The comparison of mathematical relationships and experimental results showed low error. Additionally, the microstructure of the samples was examined using scanning electron microscope (SEM) to confirm the results. The results showed that by increasing the weight percentage of graphene nanosheets from 0 to 2% and decreasing NBR from 40 to 20% weight percentage in the nanocomposite, the tensile strength increases while the elongation at break decreases. By optimizing the mechanical properties to achieve maximum tensile strength (15.4 MPa) and maximum elongation at break (107.6%), the weight percentages of graphene nanosheets and NBR will be respectively 0.81 and 35.18%.

کلیدواژه‌ها [English]

  • Nanocomposite
  • Mechanical Properties
  • Polyvinyl Chloride
  • Nitrile Butadiene Rubber
  • Graphene
[1] Baeurle SA, Hotta A, Gusev A. On the glassy state of multiphase and pure polymer materials. Polymer. 2006 August 9;47(17):6243–6253. doi: 10.1016/j.polymer.2006.05.076
[2] Wang H, Li, Song G, Gu ZH, Li P, Zhang CH, Gao L, Study of NBR/PVC/OMMT nanocomposites prepared by mechanical blending. Iranian Polymer. 2010 November 8;19(1).
[3] Moghri M, Zanjanijam AR, Seifi L, Ramezani M. An investigation on rheological behavior of the PVC/NBR/nanoclay nanocomposites by torque rheometry: the effects of formulation variables using response surface approach. Inorganic and Organometallic Polymers and Materials. 2017 September 20 ;Vol. 27:264–273.  doi: 10.1007/s10904-017-0682-x
[4] Peyravi S, Nakhaei MR, Safarpour P, Naderi G. Experimental study the effects of halloysite nanoparticles and acrylonitrile butadiene rubber elastomer on mechanical properties of PVC/NBR/HNT Nanocomposites. Science and Technology of Composites. 2021 December;8(2):1494-1502. doi: 10.22068/JSTC.2021.530671.1727 [In Persian]
[5] Mehrabzadeh M, Delfan N. Thermoplastic elastomers of butadiene-acrylonitrile copolymer and polyamide. VI. Dynamic crosslinking by different systems. Applied Polymer science. 2000 june 20;77(9):2057-2066.  doi: 10.1002/1097-4628(20000829)77:9<2057::AID-APP23>3.0.CO;2-8
[6] Ghorbankhan A, Nakhaei MR, Safarpour P. Modeling and Optimization of Mechanical Properties of PA6/NBR Nanocomposite Reinforced with Perlite Nanoparticles, Science and Technology of Composites. 2021 June 5 ;8(1):1421-1430, 2021. doi: 10.22068/JSTC.2021.527365.1714 [In Persian]
[7] Saad N A, Obaid MM. Enhanced the antibacterial and mechanical properties of UHMWPE by addition sort fibers of polyacrylonitraile (PAN), graphene nanoplate (GNP) and hydroxyapatite (HAp). Indian Journal of Forensic Medicine and Toxicology. 2020 August 17;14(2):1370-1376. doi: 10.37506/ijfmt.v14i2.3103
[8] Al-Saleh MA, Yussuf AA, Al-Enezi S, Kazemi R, Wahit MU, Al-Shammari T, Al-Banna A. Polypropylene/graphene nanocomposites: Effects of GNP loading and compatibilizers on the mechanical and thermal properties. Materials. 2019 November 27;12(23).  doi: 10.3390/ma12233924
[9] Haghnegahdar M, Naderi G, M. Ghoreishy MHR. Fracture toughness and deformation mechanism of un-vulcanized and dynamically vulcanized polypropylene/ethylene propylene diene monomer/graphene nanocomposites. Composites Science and Technology. 2017 March 22; 141:83-98.  doi: 10.1016/j.compscitech.2017.01.015
[10] Esmizadeh E, Naderi G, Ghoreishy MHR. Modification of Theoretical models to predict mechanical behavior of PVC/NBR/organoclay nanocomposites. Applied Polymer Science. 2013 June 14;130(5);3229-3239.  doi: 10.1002/app.39556
[11] Hajibaba A, Naderi G, Esmizadeh E, Ghomeshi MHR. Morphology and dynamic-mechanical properties of PVC/NBR blends reinforced with two types of nanoparticles. Composite Materials. 2012 December 26;48(2):131-141.  doi: 10.1177/0021998312469242
[12] Subramanian N, Senthilvel K, Prabu B. Studies on the morphology and physic mechanical properties of NBR/PVC hybrid nanocomposites. Materials Today: Proceedings. 2021;38(5):2810-2816.  doi: 10.1016/j.matpr.2020.08.739
[13] Zhang S, Zhai Y, Zhang Y. Microwave absorbing performance and mechanical properties of poly (vinyl chloride)/acrylonitrile–butadienerubber thermoplastic elastomers filled with multiwalled carbon nanotubes and silicon carbide. Applied Polymer Science. 2013 March 16;30(1):345-351.  doi: 10.1002/app.39063
[14] Goodarzi A, Shahrjabian H. Fabrication of polylactic acid / polyethylene glycol/ hydroxyapatite nanoparticles nanocomposite foam by mass porosity method. Manufacturing Engineering. 2021 December;8(9):37- 49. [In Persian]
[15] Safarabadi A, Tahmasbi V, Sousanabadi Farahani A, Zolfaghari M. Electrical discharge machining of metal matrix composite AZ91 magnesium alloy and investigation and optimization of the effect of input parameters on material removal rate and workpiece surface roughness. Manufacturing Engineering. 2022 September;9(6):59-69.  doi: 10.22034/ijme.2022.160942 [In Persian]
[16] Ghasemi FA, Daneshpayeh S, Ghasemi I, Ayaz M. An investigation on the Young’s modulus and impact strength of nanocomposites based on polypropylene/linear low-density polyethylene/titan dioxide (PP/LLDPE/TiO 2) using response surface methodology. Polymer Bulletin. 2015 December 8;73(6):1741-1760. doi: 10.1007/s00289-015-1574-2
[17] Nakhaei MR, Naderi G, Ebrahimpour A.  Mathematical modeling of mechanical properties of PA6/NBR/Clay Nanocomposites Fabrication using the Thermal Friction Stirs Processing. Science and Technology of Composites. 2020 September;7(2):833-842.  doi: 10.22068/JSTC.2020.112864.1582 [In Persian]
[18] Malenga EN, Mulaba-Bafubiandi A, Nheta W. Application of the response surface method (RSM) based on central composite design (CCD) and design space (DS) to optimize the flotation and the desliming conditions in the recovery of PGMs from mine sludge. Separation Science and Technology. 2022 July 3;57(18):2960-2983.  doi: 10.1080/01496395.2022.2092514
[19] Khairuddin FH, Yusoff NM, Badri K, Koting S, Choy PN, Misnon NA, Osmi SC.  Design and optimization of polyurethane modified bitumen (PUMB) using response surface method. IOP Conference Series: Earth and Environmental Science. 2020;476(1):12061  doi: 10.1088/1755-1315/476/1/012061
[20] Montgomery DC. Design and analysis of experiments. Ninth Edition. Arizona State University: John wiley & sons; 2017.
[21] Forghani N, Maghsoud Z, Ramezanian N. Enhancing water flux and rejection performance through UV crosslinking: Optimization of surface modification of polyacrylonitrile (PAN)/ acrylonitrile butadiene rubber (NBR) blend membrane using benzophenone as a crosslinking agent. Applied Surface Science. 2023 December 1; 639:141-158. doi: 10.1016/j.apsusc.2023.158114
[22] Nakhaei MR, Naderi G. Modeling and optimization of mechanical properties of pa6/nbr/graphene nanocomposite using central composite design. International Journal of Engineering. 2020 September;33(9): 1803-1810. doi: 10.5829/ije.2020.33.09c.15
[23] Nakhaei MR, Ghorbankhan A. Experimental Investigation on Mechanical Properties of PA6/NBR/Graphene Nanocomposite by Response Surface Methodology. Karafan. 2021 Jan 1;18(3):327-341. doi: 10.48301/KSSA.2021.275252.1405 [In Persian]
[24] Ghorbankhan A, Nakhaei MR, Safarpour P. Fracture behavior, microstructure, and mechanical properties of PA6/NBR nanocomposites. Polymer Composites. 2022 August 16;43(9):6696-6708.  doi: 10.1002/pc.26993
[25] Bakhtiari A, Ashenai Ghasemi F, Naderi G, Nakhae MR. An approach to the optimization of mechanical properties of polypropylene /nitrile butadiene rubber /halloysite nanotube /polypropylene‐g‐maleic anhydride nano composites using response surface methodology. Polymer Composites. 2020 February 11;41(6):2330-2343.  doi: 10.1002/pc.25541
[26] Soleymani H, Nakhaei MR, Naderi G. Experimental and mathematical investigation of mechanical and microstructural properties of PA6/NBR nanocomposite reinforced with silicon carbide (SiC) nanoparticles, Science and Technology of Composites. 2022 August;8(4):1789-1796.  doi:  10.22068/JSTC.2022.549961.1774
[27] Daneshpayeh S, Ghasemi FA, Ghasemi I, Ayaz M. Predicting of mechanical properties of PP/LLDPE/TiO2 nano-composites by response surface methodology, Composites Part B: Engineering.  2016 January;84: 109-120.  doi: 10.1016/j.compositesb.2015.08.075
[28] Zhang Y, Zhang X, Yang L, Yu X. Optimization design for downhole dynamic seal based on response surface method. Advances in Mechanical Engineering. 2019;11(2).  doi: 10.1177/1687814019828441
[29] Soleymani H, Nakhaei MR. Investigation of mechanical, thermal and microstructural properties of PA6/NBR nanocomposites reinforced with silicon carbide nanoparticles. Manufacturing Engineering. 2022 December;9(10):42- 54.  doi: 10.22034/ijme.2023.391059.1764 [In Persian]
[30] Yaghoobi H, Fereidoon A. An experimental investigation and optimization on the impact strength of kenaf fiber biocomposite: application of response surface methodology. Polymer Bulletin. 2017 October 17;75(8):3283-3309.  doi: 10.1007/s00289-017-2212-y
[31] Paran SMR, Naderi G, Ghoreishy MHR, Dubois C. Essential work of fracture and failure mechanisms in dynamically vulcanized thermoplastic elastomer nanocomposites based on PA6/NBR/XNBR-grafted HNTs. Engineering Fracture Mechanics. 2018 September; 200:251-262.  doi: 10.1016/j.engfracmech.2018.07.018
[32] Karimi M, Ghajar R, Montazeri A. Investigation of nanotubes’ length and their agglomeration effects on the elastoplastic behavior of polymer-based nanocomposites. Science and Technology of Composites. 2017 September;4(2): 229-240. [In Persian]
[33] Nakhaei MR, Naderi G, Mostafapour A. Effect of Processing Parameters on Morphology and Tensile Properties of PP/EPDM/Organoclay Nanocomposites Fabricated by Friction Stir Processing, Iraninan Polymer.2016 January 13;25(2):179-191.  doi: 10.1007/s13726-015-0412-6
[34] Purhaji M, Nakhaei MR. Experimental study of PP/EPDM/Graphene Nanocomposites Fabricated by Friction Stir Processing, The 6th International Conference on Technology Development in mechanical and Aerospace Engineering; Tehran, Iran, 2023 November 21. [In Persian]
[35] Nakhaei MR, Mohammadi SH, Naderi G, Ghoreishy MHR. Experimental study of microstructure. thermal and mechanical properties of PA6/NBR nanocomposites reinforced with graphene nanoparticle. Science and Technology of Composites. 2019 December;6(3):419-426. doi: 10.22068/JSTC.2019.97568.1491 [In Persian]
[36] Hamidi E, Panahizadeh V. Experimental Analysis of Mechanical Properties of Nanocomposites Based on Poly amide 6/EPDM/Carbon Nanotubes. Science and Technology of Composites. 2021 June;8(1):1453-1460.  doi: 10.22068/JSTC.2021.529756.1723 [In Persian]