بررسی تجربی و شبیه‌سازی قابلیت جذب انرژی لوله‌های جدار نازک دایروی سوراخ‌دار آلومینیومی تحت بار فشاری محوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

2 دانش‌آموخته کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

3 استادیار، گروه مهندسی مکانیک، دانشگاه صنعتی سیرجان، سیرجان، ایران

10.22034/ijme.2023.409379.1813

چکیده

لوله­‌های جدار نازک سوراخ‌­دار به ­عنوان یک گزینه جذب انرژی مناسب، همواره مورد توجه محققان بوده است. در این پژوهش، قابلیت جذب انرژی لوله‌­های جدار نازک سوراخ‌­دار با الگوی نامنظم با لوله­‌های جدار نازک بدون سوراخ و سوراخ‌­دار منظم مقایسه شده است. در همین راستا، از لوله­‌های جدار نازک استوانه‌های از جنس آلیاژ آلومینیوم 6061 تحت بارگذاری محوری استفاده شده است. در ابتدا فرآیند با استفاده از شبیه‌­سازی اجزای محدود مدل­‌سازی و صحت نتایج عددی با استفاده از نتایج تجربی تایید شد. سپس با استفاده از آرایه متعامد L16 تاگوچی، تاثیر پارامترهای هندسی بر روی نسبت انرژی به وزن لوله‌­های جدار نازک سوراخ‌دار با الگوی نامنظم بررسی شد. در ادامه، با استفاده از تحلیل سیگنال به نویز، چیدمان بهینه به منظور دستیابی به بیشینه نسبت انرژی به وزن حاصل شد. در پایان، آزمایش‌­های تجربی بر روی لوله با چیدمان بهینه، لوله بدون سوراخ و لوله سوراخ­‌دار منظم انجام شد. با مقایسه قابلیت جذب انرژی لوله­‌های مختلف مشخص شد که با چیدمان بهینه، نسبت انرژی به وزن نسبت به لوله­‌های بدون سوراخ و سوراخ­‌دار منظم به ترتیب در حدود 19 و 26% افزایش می­‌یابد. همچنین با استفاده از الگوی پیشنهادی جدید، نسبت نیروی اولیه به نیروی متوسط نسبت به نمونه‌های بدون سوراخ و سوراخ­‌دار منظم به ترتیب در حدود 17 و 19% کاهش می‌­یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental and numerical investigation of energy absorption capability of holed thin-walled circular aluminum tubes under axial compression loading

نویسندگان [English]

  • Majid Elyasi 1
  • Meghdad Roohol amini Ahangar 2
  • Vahid Modanloo 3
1 Associate Professor, Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
2 MSc Graduate, Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran
3 Assistant Professor, Mechanical Engineering Department, Sirjan University of Technology, Sirjan, Iran
چکیده [English]

Perforated thin-walled tubes have always been the focus of researchers as an appropriate energy absorption alternative. In this research, the energy absorption capability of perforated thin-walled tubes with irregular pattern has been compared with thin-walled tubes without holes and regular holes. In this regard, cylindrical thin-walled tubes made of aluminum alloy 6061 have been used under axial loading. At first, the process was modeled using the finite element simulation, and the accuracy of the numerical results was verified using the experimental results. Then, using Taguchi's L16 orthogonal array, the effect of geometrical parameters on the energy-to-weight ratio of the perforated thin-walled tubes with irregular pattern was investigated. Afterward, the optimal arrangement was obtained to achieve the maximum energy-to-weight ratio using the signal-to-noise analysis. Finally, experimental tests were carried out on the tube with the optimal arrangement, the tube without holes and the tube with regular holes. By comparing the energy absorption ability of various tubes, it was found that with the optimal arrangement, the energy-to-weight ratio increases by 19 and 26%, respectively, compared to the non-perforated and regular perforated tubes. Also, using the new proposed pattern, the initial force to average force is reduced by 17 and 19%, respectively, compared to the non-perforated and regular perforated samples.

کلیدواژه‌ها [English]

  • Thin-Walled Tubes
  • Crushing Force
  • Energy to Weight Ratio
  • Finite Element Simulation
[1] Elyasi M,  Moradpour A, Montazeri S. Axial Crushing in a Novel Technique of Thin-Walled Tube, Key Engineering Materials. 2014; 622-623: 709-716. doi: 10.4028/www.scientific.net/KEM.622-623.709
[2] Elyasi M, Montazeri S, Moradpour A. Investigating the effect of material type in the new design of thin-walled tubes under axial loading, Advances in Materials and Processing Technologies. 2015;1(3-4): 375-383. doi: 10.1080/2374068X.2015.1133759
[3] Lu H, Wang X, Chen T. In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson's ratio and enhanced energy absorption, Thin-Walled Structures. 2021; 160: 107366. doi: 10.1016/j.tws.2020.107366
[4] Moradpour A, Elyasi M, Montazeri S. Developing a new thin-walled tube structure and analyzing its crushing performance for aa 60601 and mild steel under axial loading, Transactions of the Indian Institute of Metals. 2016; 69: 1107-1117. doi: 10.1007/s12666-015-0629-2
[5] Elyasi M, Modanloo V, Talebi-Ghadikolaee H, Ahmadi-Khatir F, Akhoundi B. Investigating the effect of heat treatment in hydraulic rotary draw bending of AA6063 tubes, Modares Mechanical Engineering. 2023; 23 (4): 257-264. [In Persian]
[6] Modanloo V, Akhoundi B, Mashayekhi A, Talebi-Ghadikolaee H, Zeinolabedin Beygi A. The study of forming of steel cups using hydrodynamic deep drawing process, Iranian Journal of Manufacturing Engineering. 2022; 9(8): 56-64. [In Persian]
[7] Tayyebati M, Ahmadi H, Liaghat G. Experimental and numerical investigation on crushing of metal-composite hybrid energy absorber under a quasi-static loading, Iranian Journal of Manufacturing Engineering. 2020; 6(8): 54-66. [In Persian]
[8] Hamouda AM, Saied RO, Shuaeib FM. Energy absorption capacities of square tubular structures, Journal of Achievements in Materials and Manufacturing Engineering. 2007; 24(1): 36-42.
[9] Adachi T, Tomiyama A, Araki W, Yamaji A. Energy absorption of a thin-walled cylinder with ribs subjected to axial impact, international journal of impact engineering. 2008; 35(2): 65-79. doi: 10.1016/j.ijimpeng.2006.11.005
[10] Zhang X, Wen Z, Zhang H, Axial crushing and optimal design of square tubes with graded thickness, Thin-Walled Structures. 2014; 84: 263-274. doi: 10.1016/j.tws.2014.07.004
[11] Nia AA, Parsapour M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections, Thin-Walled Structures. 2014; 74: 155-165. doi: 10.1016/j.tws.2013.10.005
[12] Nikkhah H, Baroutaji A, Olabi AG. Crashworthiness design and optimisation of windowed tubes under axial impact loading, Thin-Walled Structures. 2019; 142: 132-148. doi: 10.1016/j.tws.2019.04.052
[13] Graciano C, Martínez GA, Smith D. Experimental investigation on the axial collapse of expanded metal tubes, Thin-Walled Structures. 2009; 47(8-9): 953-961. doi: 10.1016/j.tws.2009.02.002
[14] Pirmohammad S, Esmaeili-Marzdashti S. Multi-objective crashworthiness optimization of square and octagonal bitubal structures including different hole shapes, Thin-Walled Structures. 2019; 139: 126-138. doi: 10.1016/j.tws.2019.03.004
[15] Tang Z, Liu S, Zhang Z. Analysis of energy absorption characteristics of cylindrical multi-cell columns, Thin-Walled Structures. 2013; 62: 75-84. doi: 10.1016/j.tws.2012.05.019
[16] Rahi A. Controlling energy absorption capacity of combined bitubular tubes under axial loading, Thin-Walled Structures. 2018; 123: 222-231. doi: 10.1016/j.tws.2017.11.032
[17] Montazeri S, Elyasi M, Moradpour A. Investigating the energy absorption, SEA and crushing performance of holed and grooved thin-walled tubes under axial loading with different materials, Thin-Walled Structures. 2018; 131: 646-653. doi: 10.1016/j.tws.2018.07.024
[18] Modanloo V, Talebi-Ghadikolaee H, Akhoundi B, Mashayekhi A, Ahmadi Khatir F, Zeinolabedin Beygi A. Investigation of process parameters of the hydrodynamic deep drawing assisted by radial pressure using Taguchi and finite element methods, Iranian Journal of Manufacturing Engineering. 2022; l. 9 (10): 11- 20. doi: 10.22034/IJME.2023.390896.1762 [In Persian]
[19] Moradian M, Doniavi A, Modanloo V, Alimirzaloo V. Process parameters optimization in gas blow forming of pin-type metal bipolar plates using Taguchi and finite element methods, International Journal of Advanced Design and Manufacturing Technology. 2017; 2: 102-108.