مقایسه رفتار دینامیکی مواد فولادی و آلومینیومی با کامپوزیت زمینه اپوکسی تقویت‌شده با الیاف کربن و شیشه به روش المان محدود

نوع مقاله : مقاله پژوهشی

نویسندگان

عضو هیئت‌علمی، گروه مهندسی مکانیک، دانشگاه فنی و حرفه‌ای، تهران، ایران

10.22034/ijme.2023.418523.1845

چکیده

در این تحقیق رفتار مقاومت به ضربه با سرعت پایین برای دو نوع از مواد رایج فلزی فولادی و آلومینیومی و دو نوع ماده کامپوزیتی زمینه اپوکسی تقویت‌شده با الیاف کربن و شیشه آنالیز گردیده و نتایج مربوط به آنالیزهای مواد فلزی و کامپوزیتی از جمله تنش‌ها و کرنش‌های فون میزس، تنش برشی ماکزیمم و انرژی کرنشی مربوط به ضربه در این مواد مقایسه گردید. بر اساس نتایج به‌دست‌آمده فولاد با داشتن تنش فون میزس و برشی بالا و مقادیر کرنش فون میزس و کرنش برشی پایین دارای عملکرد بهتری نسبت به آلومینیوم و مواد کامپوزیتی بود. نمونه فولادی با تحمل مقدار 23815 مگاپاسکال دارای بیشترین تنش فون میزس و نمونه کامپوزیتی تقویت‌شده با الیاف کربن با تحمل 4763 مگاپاسکال دارای کمترین مقدار تنش فون میزس بود. بیشترین مقدار کرنش فون میزس در نمونه کامپوزیت الیاف کربن در مقایسه با سایر نمونه‌های فلزی و کامپوزیتی است این افزایش به مقدار حدوداً 870% بیشتر از نمونه فولادی می‌باشد که این نشانگر ضعف این مواد در تحمل بارهای ضربه‌ای است. همچنین نمونه کامپوزیتی تقویت‌شده با الیاف شیشه دارای کارکرد بهتر در مقایسه با کامپوزیت‌های زمینه اپوکسی تقویت‌شده با الیاف کربن است. دلیل این امر خاصیت جذب انرژی بهتر الیاف شیشه در مقایسه با الیاف کربن می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of dynamic behavior of steel and aluminum materials with epoxy composite reinforced with carbon and glass fibers by FEM

نویسندگان [English]

  • Farzin Azimpour Shishevan
  • Hossein Rahimi Asiabaraki
  • Bahman Rahmatinejad
Faculty Member, Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran
چکیده [English]

In this research, the impact resistance behavior at low speed is analyzed for two types of common metal materials, steel and aluminum, and two types of epoxy composite materials reinforced with carbon fibers and glass, and the results related to the analyzes of metal and composite materials, including Von Mises stresses and strains, maximum shear stress and impact strain energy were compared in these materials. Based on the obtained results, steel with high Von Mises and shear stress and low Von Mises strain and shear strain had better performance than aluminum and composite materials. The steel sample bearing 23815 MPa had the highest von Mises stress and the composite sample reinforced with carbon fibers bearing 4763 MPa had the lowest von Mises stress. The highest Von Mises strain is in the carbon fiber composite sample compared to other metal and composite samples. This increase is about 870% more than the steel sample. This indicates the weakness of these materials in bearing shock loads. Also, the glass fiber reinforced composite sample has better performance compared to the carbon fiber reinforced epoxy composites. The reason for this is the better energy absorption properties of glass fibers compared to carbon fibers.

کلیدواژه‌ها [English]

  • Finite Element
  • Low Velocity Impact
  • Metal Materials
  • Carbon Fiber Composite
  • Glass Fiber Composite
[1] Sergolle M, Castel X, Himdi M, Besnier P, Parneix P. Structural composite laminate materials with low dielectric loss: Theoretical model towards dielectric characterization. Composites Part C: Open Access. 2020 Nov 1; 3:100050. doi: 10.1016/j.jcomc.2020.100050
[2] Abdollahiparsa H, Shahmirzaloo A, Teuffel P, Blok R. A review of recent developments in structural applications of natural fiber-Reinforced composites (NFRCs). Composites and Advanced Materials. 2023 Dec 19; 32:26349833221147540. doi: 10.1177/26349833221147540
[3] Moslemi-Abyaneh B, Ghasemi AR. Investigation of thermal fatigue effects on crack propagation and mode I delamination of multilayer laminated composites using digital image correlation. Journal of Science and Technology of Composites. 2022 Apr 21;8(3):1652-43. doi: 10.22068/JSTC.2022.542167.1755 [In Persian]
[4] Zhang H, Wu Y, Wang K, Peng Y, Wang D, Yao S, Wang J. Materials selection of 3D-printed continuous carbon fiber reinforced composites considering multiple criteria. Materials & Design. 2020 Nov 1; 196:109140. doi: 10.1016/j.matdes.2020.109140
[5] Rad CV, Kodagali K, Roark J, Revilock D, Ruggeri C, Harik R, Sockalingam S. High velocity impact response of hybridized pseudo-woven carbon fiber composite architectures. Composites Part B: Engineering. 2020 Dec 15; 203:108478. doi: 10.1016/j.compositesb.2020.108478
[6] Patil S, Reddy DM. Impact damage assessment in carbon fiber reinforced composite using vibration-based new damage index and ultrasonic C-scanning method. InStructures 2020 Dec 1 (Vol. 28, pp. 638-650). Elsevier. doi: 10.1016/j.istruc.2020.09.011
[7] Mousavi MV, Khoramishad H. The effect of hybridization on high-velocity impact response of carbon fiber-reinforced polymer composites using finite element modeling, Taguchi method and artificial neural network. Aerospace Science and Technology. 2019 Nov 1; 94:105393. doi: 10.1016/j.ast.2019.105393
[8] Asad M, Dhanasekar M, Zahra T, Thambiratnam D. Impact mitigation of masonry walls with carbon fibre and Auxetic fibre composite renders–A numerical study. InStructures 2020 Dec 1 (Vol. 28, pp. 2733-2751). Elsevier. doi: 10.1016/j.istruc.2020.09.047
[9] Liu H, Liu J, Ding Y, Zheng J, Luo L, Kong X, Zhou J, Blackman BR, Kinloch AJ, Dear JP. Modelling the effect of projectile hardness on the impact response of a woven carbon-fibre reinforced thermoplastic-matrix composite. International Journal of Lightweight Materials and Manufacture. 2020 Dec 1;3(4):403-15. doi: 10.1016/j.ijlmm.2020.05.005
[10] Hosseini M. Analytical and Numerical study of composite plates under impact loading at low velocity with different strikers. Modares Mechanical Engineering. 2018 Apr 10;18(2):53-60. doi: 20.1001.1.10275940.1397.18.2.25.4 [In Persian]
[11] He B, Wang B, Wang Z, Qi S, Tian G, Wu D. Mechanical properties of hybrid composites reinforced by carbon fiber and high-strength and high-modulus polyimide fiber. Polymer. 2020 Sep 9; 204:122830. doi: 10.1016/j.polymer.2020.122830
[12] Hosur MV, Adbullah M, Jeelani S. Studies on the low-velocity impact response of woven hybrid composites. Composite Structures. 2005 Mar 1;67(3):253-62. doi: 10.1016/j.compstruct.2004.07.024
[13] Symons DD. Characterisation of indentation damage in 0/90 lay-up T300/914 CFRP. Composites science and technology. 2000 Feb 1;60(3):391-401. doi: 10.1016/S0266-3538(99)00139-6
[14] Sadasivam B, Mallick PK. Impact damage resistance of random fiber reinforced automotive composites. Journal of Thermoplastic Composite Materials. 2002 May; 15(3): 181-91. doi: 10.1177/0892705702015003438
[15] Azimpour-Shishevan F, Mohtadi-Bonab MA, Akbulut H, Rahmatinejad B. Low velocity impact behavior of twill basalt/epoxy composites modified by graphene nanoparticles. Journal of Composite Materials. 2023 Apr;57(8):1379-94. doi: 10.1177/00219983231154484
[16] Sayer M, Bektaş NB, Sayman O. An experimental investigation on the impact behavior of hybrid composite plates. Composite Structures. 2010 Apr 1;92(5):1256-62. doi: 10.1016/j.compstruct.2009.10.036
[17] Wang SX, Wu LZ, Ma L. Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates. Materials & Design. 2010 Jan 1;31(1):118-25. doi: 10.1016/j.matdes.2009.07.003
[18] Hülagü B, Ünal HY, Acar V, Khan T, Aydın MR, Aydın OA, Gök S, Pekbey Y, Akbulut H. Low-velocity impact and bending response of graphene nanoparticle-reinforced adhesively bonded double strap joints. Journal of adhesion science and technology. 2021 Nov 17;35(22):2391-409. doi: 10.1080/01694243.2021.1885924
[19] Azimpour‐Shishevan F, Mohtadi‐Bonab MA, Rahmatinejad B. The effects of graphene oxide addition on low velocity impact performance of aramid fiber reinforced epoxy composites. Journal of Applied Polymer Science.:e54832. doi: 10.1002/app.54832
[20] Žmindák M, Novák P, Soukup J, Kaco M. Dynamic simulation of composite layered plates reinforced by unidirectional fibers subjected low velocity impact. InMATEC Web of Conferences 2020 (Vol. 313). EDP Sciences; 2020. doi: 10.1051/matecconf/202031300025
[21] Wriggers P. Computational contact mechanics. Laursen TA, editor. Berlin: Springer; 2006 Oct 6. doi: 10.1007/978-3-540-32609-0
[22] Azimpour-Shishevan F, Akbulut H, Mohtadi-Bonab MA. The effect of thermal shock cycling on low velocity impact behavior of carbon fiber reinforced epoxy composites. Journal of Dynamic Behavior of Materials. 2019 Jun 15; 5:161-9. doi: 10.1007/s40870-019-00195-x