اثر گرادیان دمایی روی تحولات ریزساختاری شمش ضخیم فولاد زنگ‌نزن آستنیتی نیترونیک 50 حین نورد داغ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

2 استاد، مجتمع دانشگاهی مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر تهران، تهران، ایران

3 دانشیار، مجتمع دانشگاهی مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر تهران، تهران، ایران

4 پژوهشگر، مجتمع دانشگاهی مواد و فناوری‌های ساخت، دانشگاه صنعتی مالک اشتر تهران، تهران، ایران

10.22034/ijme.2024.416957.1833

چکیده

اصلاح اندازه دانه از طریق تبلور مجدد دینامیکی یکی از راه­‌های مناسب جهت بهبود خواص مکانیکی شمش­‌های فولادهای زنگ‌نزن آستنیتی نیتروژن بالا حین نورد داغ می‌­باشد. در این مقاله با استفاده به شبیه‌­سازی بر پایه‌­ی المان محدود و نتایج تجربی، اثر نورد معمولی و نورد با گرادیان دمایی روی تحولات ریزساختاری شمش فولاد زنگ‌­نزن آستنیتی حاوی نیتروژن نیترونیک 50 حین نورد داغ مورد بررسی قرار گرفته است. نتایج حاصل از شبیه‌­سازی به­‌وسیله‌­ی آباکوس نشان داد که تحت شرایط گرادیان دمایی می­‌توان یکنواختی کرنش در سطح مقطع را افزایش داد. در حالی­‌که در شرایط نورد معمولی مقدار بیشینه کرنش در سطح نمونه است. نتایج ریز ساختاری حاصل از میکروسکوپ نوری برای نورد با گرادیان دمایی نشان داد میانگین اندازه دانه در مرکز شمش کمتر از سطح شمش بوده که نشان می‌­دهد مقدار تبلورمجدد در مرکز شمش بیش‌­از سطح نمونه است. اختلاف دما در مرکز نسبت به سطح نمونه منجر به کاهش قابل ملاحظه استحکام در مرکز شمش نسبت به سطح آن می­‌شود. اختلاف میانگین اندازه دانه­‌های تبلور مجدد دینامیکی شده در سطح و مرکز شمش برای نورد با گرادیان دمایی کمتر از  3 بود. وجود دانه‌­های اولیه (میانگین اندازه دانه  68) و مرزهای تحدب یافته در مرکز شمش و دانه­‌های یکنواخت و ریز در قسمت سطحی (  5/8) شمش تحت نورد معمولی ( 1000)، نشان داد که در مرکز شمش به دلیل پایین بودن دما و مقدار کرنش مؤثر، تبلور مجدد دینامیکی رخ نداده است. توزیع تقریباً یکنواخت دانه‌­های آستنیت در جهت ضخامت شمش برای نورد با گرادیان دمایی نشان داد که این روش، برای نورد داغ شمش فولاد آستنیتی روشی مناسب نسبت به شرایط نورد معمولی است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of gradient temperature on the microstructural evolution of Nitronic 50 austenitic stainless steel thick ingot during hot rolling

نویسندگان [English]

  • Arash Ghasemi 1
  • Seyed Mahdi Abbasi 2
  • Maryam Morakabati 3
  • Adly Akhondzadeh 4
1 PhD Candidate, Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran, Iran
2 Professor, Faculty of Materials and Manufacturing Technologies, Malek-Ashtar University of Technology, Tehran, Iran
3 Associate professor, Faculty of Materials and Manufacturing Technologies, Malek-Ashtar University of Technology, Tehran, Iran
4 Researcher, Faculty of Materials and Manufacturing Technologies, Malek-Ashtar University of Technology, Tehran, Iran
چکیده [English]

Grain refinement through dynamic recrystallization is one way to improve the mechanical properties of high nitrogen austenitic stainless-steel ingots during hot rolling. In this paper, by using simulation based on the finite element method and experimental results, the effect of conventional rolling and gradient temperature rolling on the microstructural evolution of Nitronic 50 austenitic stainless-steel ingot during hot rolling is investigated. The results of simulations showed that strain in the center of the ingot be increased under a gradient temperature, while the maximum strain value in the conventional rolling is on the surface. The microstructural results obtained from optical microscopy for gradient temperature rolling showed strain value in the center is more than the surface. The temperature difference between the center and the surface leads to a significant reduction in the strength center of the ingot against the surface. The difference in average grain size of dynamic recrystallized for gradient temperature in the surface and center was less than 3μm. The existence of primary grains (68μm average grain size) and bulged grain boundaries in the center of ingot and refinement and small grains in the surface area (8.5μm) in conventional rolling (1000℃) showed that dynamic recrystallization, due to low effective strain and temperature, has not occurred in the center of the ingot. The almost uniform distribution of austenite grains in the direction of ingot thickness for gradient temperature rolling showed that this method is an appropriate method for hot rolling of austenitic steel ingots compared to conventional conditions.

کلیدواژه‌ها [English]

  • Simulation
  • Gradient Temperature Rolling
  • Microstructural Evolution
  • Stainless Steels
[1] Chen X, Cai Q, Xie B, Yun Y, Zhou Z. Simulation of Microstructure Evolution in Ultra‐Heavy Plates Rolling Process Based on Abaqus Secondary Development. steel research international. 2018 Dec;89(12):1800409. doi: 10.1002/srin.201800409
[2] Gaosheng L, Wei Y, Qingwu C, He Z. Effect of gradient temperature rolling (GTR) and cooling on microstructure and properties of E40-grade heavy plate. Archives of civil and mechanical engineering. 2017 Mar; 17:121-31. doi: 10.1016/j.acme.2016.09.004
[3] Hu J, Du LX, Xie H, Gao XH, Misra RD. Microstructure and mechanical properties of TMCP heavy plate microalloyed steel. Materials Science and Engineering: A. 2014 Jun 23; 607:122-31. doi: 10.1016/j.msea.2014.03.133
[4] Ding J, Zhao Z, Jiao Z, Wang J. Central infiltrated performance of deformation in ultra-heavy plate rolling with large deformation resistance gradient. Applied Thermal Engineering. 2016 Apr 5; 98:29-38. doi: 10.1016/j.applthermaleng.2015.12.021
[5] Fu H, Xu B, Xiao J, Li S, Kang T. Finite element simulation of deformation behavior of prefabricated holes in ultra-heavy plates by gradient temperature rolling. Metalurgija. 2020 Apr 1;59(2):175-8. doi: 10.1016/hrcak.srce.hr.2020.2.457
[6] Li H, Gong M, Li T, Wang Z, Wang G. Effects of hot-core heavy reduction rolling during continuous casting on microstructures and mechanical properties of hot-rolled plates. Journal of Materials Processing Technology. 2020 Sep 1; 283:116708. doi: 10.1016/j.jmatprotec.2020.116708
[7] Gao ZH, Yu W, Chen X, Xie BS, Cai QW. Effect of gradient temperature rolling process on promoting crack healing in Q500 heavy plates. International Journal of Minerals, Metallurgy and Materials. 2020 Mar; 27:354-61. doi.org/10.1007/s12613-019-1855-0. doi: 10.1007/s12613-019-1855-0
[8] Liu J, Wang X, Liu J, Liu Y, Li H, Wang C. Hot deformation and dynamic recrystallization behavior of Cu-3Ti-3Ni-0.5 Si alloy. Journal of Alloys and Compounds. 2019 Apr 25; 782:224-34. doi: 10.1016/j.jallcom.2018.12.212
[9] Li C, Huang L, Zhao M, Zhang X, Li J, Li P. Influence of hot deformation on dynamic recrystallization behavior of 300M steel: Rules and modeling. Materials Science and Engineering: A. 2020 Oct 21; 797:139925. doi: 10.1016/j.msea.2020.139925
[10] Wen W, Guoping L, Chongxun W, Jie Z, Jianxin Z, Yajun Y, Xu S, Xiaoyuan J. Development and application of cast steel numerical simulation system for heat treatment. International Journal of Metalcasting. 2019 Jul 15; 13:618-26. doi: 10.1007/s40962-019-00305-4
[11] Lopez-Garcia RD, Garcia-Pastor FA, Castro-Roman MJ, Alfaro-Lopez E, Acosta-Gonzalez FA. Effect of immersion routes on the quenching distortion of a long steel component using a finite element model. Transactions of the Indian Institute of Metals. 2016 Nov;69(9):1645-56. doi: 10.1007/s12666-015-0738-y
[12] Yaakoubi M, Kchaou M, Dammak F. Simulation of the thermomechanical and metallurgical behavior of steels by using ABAQUS software. Computational materials science. 2013 Feb 1; 68:297-306. doi: 10.1016/j.commatsci.2012.10.001
[13] Xie BS, Cai QW, Yun Y, Li GS, Ning Z. Development of high strength ultra-heavy plate processed with gradient temperature rolling, intercritical quenching and tempering. Materials Science and Engineering: A. 2017 Jan 5; 680:454-68. doi: 10.1016/j.msea.2016.10.119
[14] Ansari MA, Samanta A, Behnagh RA, Ding H. An efficient coupled Eulerian-Lagrangian finite element model for friction stirs processing. The International Journal of Advanced Manufacturing Technology. 2019 Apr 6; 101:1495-508. doi: 10.1007/s00170-018-3000-z
[15] Brunbauer S, Winter G, Antretter T, Staron P, Ecker W. Residual stress and microstructure evolution in steel tubes for different cooling conditions–Simulation and verification. Materials Science and Engineering: A. 2019 Feb 18; 747:73-9. doi: 10.1016/j.msea.2019.01.037
[16] Han F, Roters F, Raabe D. Microstructure-based multiscale modeling of large strain plastic deformation by coupling a full-field crystal plasticity-spectral solver with an implicit finite element solver. International Journal of Plasticity. 2020 Feb 1; 125:97-117. doi: 10.1016/j.ijplas.2019.09.004
[17] Knezevic M, Kalidindi SR. Crystal plasticity modeling of microstructure evolution and mechanical fields during processing of metals using spectral databases. JOM. 2017 May;69(5):830-8. doi: 10.1007/s11837-017-2289-7
[18] Shou-yuan B, Xin Z, Sheng-li L, Lin Z, Wei-juan L, Ling Y. Numerical simulation, microstructure, properties of EH40 ultra-heavy plate under gradient temperature rolling. Materials Science and Engineering: A. 2020 Jul 22; 791:139778. doi: 10.1016/j.msea.2020.139778
[19] Guo WG, Nemat-Nasser S. Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures. Mechanics of Materials. 2006 Nov 1;38(11):1090-103. doi: 10.1016/j.mechmat.2006.01.004
[20] Ghasemi A, Abbasi SM, Akhondzadeh A. The prediction microstructural evlolution and behavior austenitic stainless steel Nitronic 50 during hot rolling. 9th International Conference & Exhibition on Materials Science & Metallurgical Engineering (iMat): 2020 Nov 10; (in persian).
[21] Dieter GE, Bacon D. Mechanical metallurgy. New York: McGraw-hill; 1976 Dec. doi: 30977829/3393
[22] Babu KA, Mandal S, Athreya CN, Shakthipriya B, Sarma VS. Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel. Materials & Design. 2017 Feb 5; 115:262-75. doi: 10.1016/j.matdes.2016.11.054
[23] Samantaray D, Mandal S, Jayalakshmi M, Athreya CN, Bhaduri AK, Sarma VS. New insights into the relationship between dynamic softening phenomena and efficiency of hot working domains of a nitrogen enhanced 316L (N) stainless steel. Materials Science and Engineering: A. 2014 Mar 26; 598:368-75. doi: 10.1016/j.msea.2013.12.105
[24] Yanushkevich Z, Lugovskaya A, Belyakov A, Kaibyshev R. Deformation microstructures and tensile properties of an austenitic stainless steel subjected to multiple warm rolling. Materials Science and Engineering: A. 2016 Jun 14; 667:279-85. doi: 10.1016/j.msea.2016.05.008
[25] Zhang J, Di H, Wang X. Flow softening of 253 MA austenitic stainless steel during hot compression at higher strain rates. Materials Science and Engineering: A. 2016 Jan 5; 650:483-91. doi: 10.1016/j.msea.2015.10.084
[26] Zhang JS, Xia YF, Quan GZ, Wang X, Zhou J. Thermal and microstructural softening behaviors during dynamic recrystallization in 3Cr20Ni10W2 alloy. Journal of Alloys and Compounds. 2018 Apr 30; 743:464-78. doi: 10.1016/j.jallcom.2018.01.399
[27] Liu YX, Lin YC, Zhou Y. 2D cellular automaton simulation of hot deformation behavior in a Ni-based superalloy under varying thermal-mechanical conditions. Materials Science and Engineering: A. 2017 Apr 13; 691:88-99. doi: 10.1016/j.msea.2017.03.039
[28] Radionova LV, Perevozchikov DV, Makoveckii AN, Eremin VN, Akhmedyanov AM, Rushchits SV. Study on the Hot Deformation Behavior of Stainless Steel AISI 321. Materials. 2022 Jun 7;15(12):4057. doi: 10.3390/ma15124057
[29] Odnobokova MV, Belyakov AN, Dolzhenko PD, Kostina MV, Kaibyshev RO. On the strengthening mechanisms of high nitrogen austenitic stainless steels. Materials Letters. 2023 Jan 15; 331:133502. doi: 10.1016/j.matlet.2022.133502